博碩士論文 107226050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.207.240.230
姓名 蘇文銓(Wen-Chiuan Su)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以非週期晶疇極化反轉鈦擴散鈮酸鋰波導晶片產生偏振糾纏光子對
(Nonperiodic optical superlattice lithium niobate waveguides for the generation of polarization entanglement)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究
★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究
★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究
★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射
★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究
★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究
★ 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-9-1以後開放)
摘要(中) 本論文順利開發出了基於非週期晶疇極化反轉(NPPLN)鈦擴散鈮酸鋰波導晶片的非簡併偏振相關光子對光源,用基因演算法來優化非週期結構中所對應到的自發參量下轉換過程(SPDC)並使其達到最大與相等效率值,我們首先模擬出產生雙光子對的自發參量下轉換光源其特性,之後製作出此晶片並進行量測。
我們用古典的和頻實驗(SFG)來量測我們的NPPLN波導SPDC光源,我們發現峰值波長會隨著溫度改變出現藍移的現象,其值為0.23 nm/℃,與我們模擬的結果(0.25 nm/℃)相符合。在使用頻寬更寬的雷射進行實驗後可以在光譜上發現兩個峰值,當實驗溫度為220℃時,我們量測到的兩個峰值波長分別為1570.17 nm與1580.71 nm,其頻寬分別為0.30 nm與0.31 nm。從汞浦光能量與訊號光能量的關係為一二次曲線可以說明這是一個二次非線性過程。
在SFG量測中可以看到兩道強度相等的直線代表了非週期結構中所包含的兩個主要的type-II相位匹配,從此結果可以預測出有兩對偏振糾纏光子對波長分別為1566 nm與1585 nm,並且透過SFG對SPDC的轉換原理可以知道是透過汞浦光波長為787.8 nm來產生。在未來我們可以在同一片晶片中透過在SPDC後段加入一段結構稱為電光模態耦合器(EOPMC)來更進一步消除因為雙折射晶體所造成的光子對間的時間延遲。
摘要(英) In this study, we develop a nondegenerate polarization-correlated photon-pair source based on titanium-diffused nonperiodically-poled lithium niobate (NPPLN) waveguides. The nonperiodic domains are optimized using a genetic algorithm to maximize and equalize efficiencies of the respective spontaneous parametric down-conversion processes. We have first simulated the performance of the novel NPPLN spontaneous parametric down conversion (SPDC) source for dual photon-pair generation and then fabricated and characterized the device.
We characterize the NPPLN waveguide SPDC source by means of classical sum-frequency generation (SFG) measurements. We found the peak wavelengths will have a blue shift of 0.23 nm/℃ with temperature tuning, which agrees well with the simulation result (0.25 nm/℃). We can see two peaks in the spectrum when we using the wider wavelength range laser source. At 220oC, we measured dual spectral peaks at 1570.17 nm and 1580.71 nm with bandwidths of 0.30 nm and 0.31 nm, respectively. The measured relationship between the pump power and signal power is a quadratic curve which is a signature of 2nd order nonlinear process.
In the measurement, two SFG maxima of equal amplitude corresponding to the two main components of the dual type-II quasi-phase-matching conditions can be observed, from which we can predict that there will be two polarization entangled photon pairs with wavelengths at 1566 nm and 1585 nm, respectively, generated by a pump at 787.8 nm according to the correspondence theory between SFG and SPDC. In the future, we can add a structure called electro-optic polarization mode converter in the same chip with the SPDC source to further eliminate the time delay between the photon pairs caused by the birefringence of the crystal.
關鍵字(中) ★ 鈮酸鋰
★ 非週期
★ 波導
★ 偏振糾纏
★ 量子光源
關鍵字(英) ★ lithium niobate
★ nonperiodic
★ waveguide
★ polarization entanglement
★ quantum light source
論文目次 摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 VII
一、 緒論 1
1-1. 積體光學簡介 1
1-2. 量子光學的簡介與發展 1
1-3. 研究動機 3
1-4. 內容概要 3
二、 實驗原理 4
2-1. 自發參量下轉換 4
2-2. 鈮酸鋰晶體之晶疇極化反轉 7
2-3. 基因演算法 8
三、模擬結果 11
3-1. 晶片設計概念 11
3-2. 基因演算法流程 13
3-3. 基因演算法的結果 17
3-4. 晶片設計 18
四、晶片製作 19
4-1. 直波導製程 19
4-2. 極化反轉製程 21
4-3. 切割與拋光 25
五、實驗結果與分析 26
5-1. 空間模態量測 26
5-2. 二次諧振波量測 29
5-3. 和頻產生量測 35
5-4. SFG到SPDC轉換模擬 39
六、結論與未來計畫 41
6-1. 結論 41
6-2. 未來計畫 41
參考文獻 44
參考文獻 1. Miller, S.E., Integrated optics: An introduction. The Bell System Technical Journal, 1969. 48(7): p. 2059-2069.
2. Arute, F., et al., Quantum supremacy using a programmable superconducting processor. Nature, 2019. 574(7779): p. 505-510.
3. Ekert, A.K., Quantum cryptography based on Bell′s theorem. Physical Review Letters, 1991. 67(6): p. 661-663.
4. Bennett, C.H., et al., Experimental quantum cryptography. Journal of Cryptology, 1992. 5(1): p. 3-28.
5. Burnham, D.C. and D.L. Weinberg, Observation of Simultaneity in Parametric Production of Optical Photon Pairs. Physical Review Letters, 1970. 25(2): p. 84-87.
6. Shi, B.-S. and A. Tomita, Highly efficient generation of pulsed photon pairs with bulk periodically poled potassium titanyl phosphate. Journal of the Optical Society of America B, 2004. 21(12): p. 2081-2084.
7. Martin, A., et al., A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength. New Journal of Physics, 2010. 12(10): p. 103005.
8. Ueno, W., et al., Entangled photon generation in two-period quasi-phase-matched parametric down-conversion. Optics Express, 2012. 20(5): p. 5508-5517.
9. 楊詩遠, 電光非週期性晶疇極化反轉鈮酸鋰定向耦合器. 中央大學光電所碩士論文, 2017.
10. 林學汕, 以非週期性晶疇極化反轉鈮酸鋰作為電光可調腔內泵浦多波長光參量振盪器之研究. 中央大學光電所碩士論文, 2019.
11. Sutherland, R.L., Handbook of Nonlinear Optics. 2003.
12. 呂學璁, 以非週期性晶疇極化反轉鈮酸鋰晶體作為電光波長調變光參量產生器. 2010.
13. Miyazawa, S., Ferroelectric domain inversion in Ti‐diffused LiNbO3 optical waveguide. Journal of Applied Physics, 1979. 50(7): p. 4599-4603.
14. Feng, D., et al., Enhancement of second‐harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains. Applied Physics Letters, 1980. 37(7): p. 607-609.
15. Webjorn, J., F. Laurell, and G. Arvidsson, Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide. IEEE Photonics Technology Letters, 1989. 1(10): p. 316-318.
16. Nutt, A.C.G., V. Gopalan, and M.C. Gupta, Domain inversion in LiNbO3 using direct electron‐beam writing. Applied Physics Letters, 1992. 60(23): p. 2828-2830.
17. Agronin, A., Y. Rosenwaks, and G. Rosenman, Ferroelectric domain reversal in LiNbO3 crystals using high-voltage atomic force microscopy. Applied Physics Letters, 2004. 85(3): p. 452-454.
18. Booker, L.B., D.E. Goldberg, and J.H. Holland, Classifier systems and genetic algorithms. Artificial Intelligence, 1989. 40(1): p. 235-282.
19. Goldberg, D., B. E. A Korb, and K. Deb, Messy Genetic Algorithms: Motivation, Analysis, and First Results. Complex Systems, 1989. 3.
20. Goodman, J.W., Introduction to Fourier Optics. 2005.
21. Gu, B.-Y., Y. Zhang, and B.-Z. Dong, Investigations of harmonic generations in aperiodic optical superlattices. Journal of Applied Physics, 2000. 87(11): p. 7629-7637.
22. Sellmeier, W., Ueber die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rückwirkung auf die ersteren, besonders zur Erklärung der Dispersion und ihrer Anomalien. Annalen der Physik, 1872. 223(11): p. 386-403.
23. Jundt, D.H., Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate. Optics Letters, 1997. 22(20): p. 1553-1555.
24. Hansen, A.K., et al., Concept for power scaling second harmonic generation using a cascade of nonlinear crystals. Optics Express, 2015. 23(12): p. 15921-15934.
25. Lenzini, F., et al., Direct characterization of a nonlinear photonic circuit’s wave function with laser light. Light: Science & Applications, 2018. 7(1): p. 17143-17143.
指導教授 陳彥宏(Yen-Hung Chen) 審核日期 2020-3-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明