博碩士論文 107226054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.190.156.80
姓名 涂譽馨(Yu-Hsin Tu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用表面電漿共振增強 Goos-Hänchen 位 移現象量測折射率變化
(Measurement of Refractive Index Variation by Using Enhanced Goos-Hänchen Shift Based on Surface Plasmon Resonance)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯透明導電膜與其成長模型之研究
★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率★ 化學氣相沉積石墨烯透明導電膜之製程與分析
★ 應用光學導納軌跡法提升太陽能選擇性吸收膜之光熱轉換效率研究★ 單晶銅成長石墨烯及其可撓性之研究
★ 高反射多層膜抗雷射損傷閥值之研究★ 高穿透類鑽碳膜之研究
★ 裝備具有低光斑的抗眩光膜層★ 透鏡品質檢測基於四波橫向剪切干涉儀
★ 利用介電係數趨近零材料設計層狀寬帶超穎吸收膜★ 抑制層對降低電漿輔助原子層沉積二氧化鉿薄膜結晶之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-1以後開放)
摘要(中) 本論文利用表面電漿共振 (Surface Plasmon Resonance, SPR) 能夠增
強 Goos-Hänchen 效應 (Goos-Hänchen Effect, GH Effect) 的能力,結
合其本身多年來於生物樣本檢測領域的應用,以偏振光學、GoosHänchen 效應、表面電漿共振以及干涉光學的理論為基礎重新設計實
驗,並且重新定義一物理量 Kaisa 作為新的檢測依據。
實驗設計中,將一道擁有兩個偏振模態 (TE and TM Mode) 的雷
射光束導入 Kretschmann Configuration,原入射雷射光由於表面電漿
共振 (Surface Plasmon Resonance, SPR) 對於兩偏振態會造成不同程
度的 Goos-Hänchen 效應的位移現象,在雷射光離開 Kretschmann
Configuration 時,原入射光由原先兩個偏振模態正交的一道雷射光一
分為二,形成兩道偏振模態正交的雷射光束,且兩道雷射光束間部分
面 積 重 合 。 並 且 在 Kretschmann Configuration 後放置 GlanThompson Polarizer 使 TE 偏振模態和 TM 偏振模態分別單獨通過,
以及兩偏振模態同時通過,使其兩於同方向量上產生分量進行干涉。
最終由偵測器量測 TE 偏振模態和 TM 偏振模態的反射光吸收光
譜以及干涉後干涉項的光強。而 Kaisa 即為干涉項的光強除以兩倍
的 TE 偏振模態和 TM 偏振模態的反射光強相乘的開根號。
經由理論模擬後計算後,原先作為檢測依據的 TM 偏振模態的
iii
反射光強的品質因數 (Figure of Merits, FoM) 為 37.12,而 Kaisa 的
品質因數則為 114.67,相較原檢測依據的品質因數提升了 3.09 倍。
實際實驗量測中,以蔗糖水溶液作為量測樣本,樣本濃度分別為 0%、
1.25%、2.5%、5%以及 10%,其對應折射率為 1.33299、1.33478、1.33659、
1.34026 以及 1.34783。而此實驗架構量測折射率變化的檢測極限
(Limit of Detection, LoD) 可達 1.05 × 10−3
RIU (Refractive Index
Unit)。
摘要(英) This work adopted the concept of Goos-Hänchen effect into the Surface
Plasmon Resonance biosensor. The experimental design is based on the
theory of the Polarization of Light, Goos-Hänchen effect, Surface Plasmon
Resonance and Interferometry. And a new parameter, Kaisa, is introduced
and defined.
In the experimental design, a laser beam with both TE and TM
polarization mode serves as the incident light source arriving at the
Kretschmann Configuration. Since the Surface Plasmon Resonance
introduce different Goos-Hänchen shifts to the laser beam with TE and TM
polarization mode, the incident laser beam is split into two beams with TE
and TM polarization mode respectively. Moreover, there is a slight spatial
shift between them. After the Krestchmann Configuration a GlanThompson Polarizer is placed to allow only the beam with TE or TM
polarization mode to pass, and create the component on the same direction
for both beam to interfere with each other. At last the detector will measure
the power of the beam with TE and TM polarization mode respectively and
the power of the interference term. The new parameter, Kaisa, is then
defined as the power of the interference term divided by two times of the
square value of the product of the power of the beam of TE and TM
polarization mode.
According to the theoretical calculation and simulation, the Figure of
Merit (FoM) of the power of the beam with TM polarization mode, which
is commonly used as the parameter for Surface Plasmon Resonance
biosensor testing is 37.12, meanwhile, the FoM of Kaisa is 114.67,
v
indicating increasing the resolution of the biosensor by 3.09 times. In
practice, the sucrose solutions are selected as the testing sample, with the
concentration of 0%, 1.25%, 2.5%, 5% and 10%, and the corresponding
refractive index will be 1.33299, 1.33478, 1.33659, 1.34026 and 1.34783
respectively. The Limit of Detection (LoD) of the system is able to reach
1.05 × 10−3 RIU (Refractive Index Unit).
關鍵字(中) ★ 表面電漿共振
★ Goos-Hänchen 效應
關鍵字(英) ★ Surface Plasmon Resonance
★ Biosensor
★ Goos-Hänchen effect
★ Kretschmann Configuration
★ Kaisa
論文目次 摘要 ii
Abstract iv
Table of Contents viii
List of Figures x
List of Tables xii
Chapter 1 Motivation and Introduction 1
1.1 Motivation 1
1.2 Review of Biosensors 2
1.3 Outline Statement 5
Chapter 2 Theory 7
2.1 Goos–Hänchen Effect 7
2.1.1 Total Internal Reflection 7
2.1.2 Evanescent Wave 8
2.1.3 Approximate Theory for Goos–Hänchen Shift 10
2.2 Surface Plasmon Resonance 22
Chapter 3 Theoretical Approach and Experimental Setup 28
3.1 Theoretical Approach 28
3.2 Experimental Design and Setup 30
3.2.1 Experimental Design 30
3.2.2 Experimental Setup 35
3.3 Simulation Results and Analytical Method 37
3.3.1 Simulation Results 37
3.3.2 Analytical Method 43
Chapter 4 Results and Discussions 46
4.1 Results 46
4.2 Discussions 49
4-3 Correction for the Figure of Merit of Kaisa 61
4-4 Conclusion 62
Chapter 5 Future Work 63
Reference 66
參考文獻 1. F. Goos, and H. J. A. d. P. Hänchen, ”Ein neuer und fundamentaler Versuch zur Totalreflexion,” 436, 333-346 (1947).
2. F. Goos, and H. J. A. d. P. Lindberg‐Hänchen, ”Neumessung des strahlversetzungseffektes bei totalreflexion,” 440, 251-252 (1949).
3. I. J. R. S. o. L. Newton, ”1704. Opticks: or, a treatise of the reflexions, refractions, inflexions and colours of light.”
4. K. J. A. d. P. Artmann, ”Berechnung der Seitenversetzung des totalreflektierten Strahles,” 437, 87-102 (1948).
5. R. H. J. J. Renard, ”Total reflection: a new evaluation of the Goos–Hänchen shift,” 54, 1190-1197 (1964).
6. B. Liedberg, C. Nylander, I. J. B. Lundström, and Bioelectronics, ”Biosensing with surface plasmon resonance—how it all started,” 10, i-ix (1995).
7. H. Im, A. Lesuffleur, N. C. Lindquist, and S.-H. J. A. c. Oh, ”Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing,” 81, 2854-2859 (2009).
8. I. Alves, C. Park, V. J. J. C. P. Hruby, and P. Science, ”Plasmon resonance methods in GPCR signaling and other membrane events,” 6, 293-312 (2005).
9. P. J. S. Singh, and a. B. Chemical, ”SPR biosensors: historical perspectives and current challenges,” 229, 110-130 (2016).
10. S. Patskovsky, V. Latendresse, A.-M. Dallaire, L. Doré-Mathieu, and M. J. A. Meunier, ”Combined surface plasmon resonance and impedance spectroscopy systems for biosensing,” 139, 596-602 (2013).
11. T. Viitala, N. Granqvist, S. Hallila, M. Raviña, and M. J. P. o. Yliperttula, ”Elucidating the signal responses of multi-parametric surface plasmon resonance living cell sensing: a comparison between optical modeling and drug–MDCKII cell interaction measurements,” 8, e72192 (2013).
12. S.-P. Ng, C.-M. L. Wu, S.-Y. Wu, H.-P. Ho, S. J. B. Kong, and Bioelectronics, ”Differential spectral phase interferometry for wide dynamic range surface plasmon resonance biosensing,” 26, 1593-1598 (2010).
13. W. DiPippo, B. J. Lee, and K. J. O. e. Park, ”Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range,” 18, 19396-19406 (2010).
14. C. Caucheteur, V. Voisin, and J. J. O. e. Albert, ”Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity,” 23, 2918-2932 (2015).
15. E. E. J. P. R. Hall, ”The penetration of totally reflected light into the rarer medium,” 15, 73 (1902).
16. J. Picht, Zur Theorie der Totalreflexion (Akademie-Verlag, 1956).
17. C. V. J. A. d. P. Fragstein, ”Zur Seitenversetzung des totalreflektierten Lichtstrahles.(Mit 3 Abbildungen),” 439, 271-278 (1949).
18. C. Schaefer, and R. J. A. d. P. Pich, ”Ein Beitrag zur Theorie der Totalreflexion,” 422, 245-266 (1937).
19. H. Raether, ”Surface plasmons on smooth surfaces,” in Surface plasmons on smooth and rough surfaces and on gratings(Springer, 1988), pp. 4-39.
20. J. D. Jackson, ”Classical electrodynamics,” (AAPT, 1999).
21. D. R. Corson, P. Lorrain, and F. J. A. J. o. P. Van Name Jr, ”Introduction to electromagnetic fields and waves,” 31, 556-556 (1963).
22. X. Yang, D. Liu, and W. Xie, ”High-sensitivity optical sensor based on surface plasmon resonance enhanced Goos-Hänchen shift,” in 2006 Conference on Optoelectronic and Microelectronic Materials and Devices(IEEE2006), pp. 74-77.
23. A. J. Z. N. P. Alzheimer, ”Uber eine eigenartige Erkrankung der Hirnrinde,” 18, 177-179 (1907).
24. A. J. A. D. A. D. Alzheimer, ”About a peculiar disease of the cerebral cortex,” 1, 8 (1987).
25. K. Maurer, and U. Maurer, Alzheimer: The Life of a Physician and the Career of a Disease (Columbia University Press, 2003).
26. A. Burns, and S. J. B. B. m. j. Iliffe, ”Alzheimer′s disease,” 338, 467-471 (2009).
27. W. H. Organization, ”Dementia. Fact sheet, Updated December 2017,” (2017).
28. P. D. Meek, E. K. McKeithan, G. T. J. P. T. J. o. H. P. Schumock, and D. Therapy, ”Economic considerations in Alzheimer′s disease,” 18, 68-73 (1998).
29. A. Wimo, L. Jonsson, B. J. D. Winblad, and g. c. disorders, ”An estimate of the worldwide prevalence and direct costs of dementia in 2003,” 21, 175-181 (2006).
30. D. Hsu, and G. J. C. A. R. A Marshall, ”Primary and secondary prevention trials in Alzheimer disease: looking back, moving forward,” 14, 426-440 (2017).
31. M. S. Chong, and S. J. T. L. N. Sahadevan, ”Preclinical Alzheimer′s disease: diagnosis and prediction of progression,” 4, 576-579 (2005).
32. N. Sharma, A. N. J. J. o. c. Singh, and d. r. JCDR, ”Exploring biomarkers for Alzheimer’s disease,” 10, KE01 (2016).
33. O. Zanetti, S. Solerte, F. J. A. o. g. Cantoni, and geriatrics, ”Life expectancy in Alzheimer′s disease (AD),” 49, 237-243 (2009).
34. P. Mölsä, R. Marttila, and U. J. A. n. s. Rinne, ”Long‐term survival and predictors of mortality in Alzheimer′s disease and multi‐infarct dementia,” 91, 159-164 (1995).
35. R. Brookmeyer, E. Johnson, K. Ziegler-Graham, H. M. J. A. s. Arrighi, and dementia, ”Forecasting the global burden of Alzheimer’s disease,” 3, 186-191 (2007).
指導教授 郭倩丞(Chien-Cheng Kuo) 審核日期 2020-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明