博碩士論文 107226064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.232.129.123
姓名 鄭佑岷(Yu-Min Cheng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 時域聚焦多光子激發定位影像的波前修正之研究
(Wavefront Correction in the Localization Imaging via Temporal Focusing Multiphoton Excitation)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 螢光顯微術 (fluorescence microscopy)於生物醫學的應用中是一項很重要的工具,可以利用螢光分子標定目標物質,在螢光顯微鏡下直觀的看出此細胞結構或分子運動,相較於其他傳統顯微鏡,此技術高專一性的標記出待觀測分子,在觀察時能以高對比度進行觀測,而不易被其他分子影響。但在使用螢光顯微系統對具有相當厚度的生物樣品進行拍攝時,常因訊號穿透不同生物介質進而產生波前像差 (wavefront aberration),這會對單分子定位(single molecule localization)技術造成相當大的影響,從而使螢光分子定位精度降低,單分子定位顯微影像的誤判也隨之增加。本論文主要將時域聚焦多光子激發單分子定位造影技術與波前修正系統結合,開發出可以使單分子定位技術愈加精準之系統。其中波前修正系統以Shack-Hartman波前感測器 (Shack-Hartman wavefront sensor)事先取出Zernike多項式中不同項次的模態,以可調變形鏡 (deformable mirror)進行波前修正;在使用螢光球樣品進行實驗時,可以發現在使用波前修正的情況下,得到的螢光訊號較無使用者強,且深度大之訊號點形狀經像差校正後,也較接近表面奈米球的形狀。最後利用適應性像散 (Adaptive Astigmatism,AA)代替圓柱透鏡,判斷不同奈米球在樣品中的深度資訊;於加入AA的實驗組中可以發現在不同深度時,像散的響應皆趨於一致,進而提升軸向判斷的能力。
摘要(英) Fluorescence microscopy is an important technique for the biomedical applications. The fluorescence microscope can be used to visualize the cellular structures and the molecular movements by labeling the target objects with the fluorophores, compared with other conventional microscopes. By the high-specific labeling to the target molecules, this technology has a capability of the high-contrast observation with the minimum disturbance signals from other molecules. However, when the fluorescence microscope is adopted to observe the thick bio-specimens, the fluorescence images suffer from the wavefront aberrations due to the fluorescence signal penetrating through different bio-media. The wavefront aberrations will have a big impact on the single-molecule localization for reducing the localization accuracy of fluorescent molecule and increasing the misjudgment of single-molecule localization microscopy imaging. In this thesis, the single-molecule localization microscopy system was developed by combined with the temporal focusing multiphoton excitation and the wavefront correction system to increase the localization accuracy. The wavefront correction system used the Shack-Hartman wavefront sensor to take the coefficients of different Zernike polynomials, and then countervailed the wavefront aberrations using the deformable mirror. After using the wavefront correction in the fluorescence-sphere measurement, the fluorescent signals of the fluorescence spheres were stronger than that without the wavefront correction. Moreover, the imaging shape of the deeper spheres were more identical to that of the spheres on the sample surface after the aberration correction. Finally, the adaptive astigmatism (AA) was adopted to instead of cylindrical lenses to extract the depth information of different spheres in the sample. In the experiment results with the AA, it can be found that the responses of the astigmatism tended to be the same at different depths, thereby improving the axial resolution.
關鍵字(中) ★ 像差
★ 光學系統
★ 波前修正
關鍵字(英) ★ Aberration
★ Optical system
★ Wavefront correction
論文目次 摘要 I
Abstract I
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-2-1時域聚焦多光子激發系統 3
1-2-2單分子定位技術 5
1-2-3波前修正應用 7
1-3 研究動機及方法 8
1-4 論文架構 10
第二章 原理介紹 11
2-1 多光子激發與時域聚焦機制 11
2-1-1多光子激發機制 11
2-1-2時域聚焦多光子激發機制 13
2-2 單分子定位顯微影像 16
2-3 波前像差修正 18
第三章 實驗方法與系統架構及流程 21
3-1 系統架構 21
3-1-1 時域聚焦多光子激發系統架構 24
3-1-2波前修正系統架構 25
3-1-3像差模組建立系統 27
3-2實驗流程 29
3-2-1像差模組建立 29
3-2-2波前修正實驗流程 31
3-3樣品製備 33
3-3-1螢光球樣品製作 33
3-3-2螢光分子(HMSiR)樣品之製作 33
3-3-3小鼠腦袋切片樣品製備 33
第四章 結果分析與討論 36
4-1多光子激發螢光 36
4-2單分子定位顯微影像 39
4-3波前像差建模 42
4-4波前修正之定位顯微影像 46
第五章 結論 50
參考文獻 51
中英文名詞對照表 55
參考文獻 1. H. Robert, Micrographia, 1st. (London, Royal Society, 1665.).
2. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy,” Science 8, 810-813 (2008).
3. B. Mark, T. R. Blosser, and X. Zhuang. “Short-range spectroscopic ruler based on a single-molecule optical switch. ” Phys. Rev. Lett. 94, 10-18 (2005).
4. E. Betzig, G. H. Patterson, R. Sougrat, W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. L. Schwartz, and H. F. Hess “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642-1645 (2006).
5. S. Lothar, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy. ” JCB. 190, 165-175 (2010).
6. M. J. Saxton, “Single-particle tracking: the distribution of diffusion coefficients,” Biophys. J. 72, 1744-1753 (1997).
7. M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations, ” Opt. Lett. 32, 5-7 (2007).
8. S. Uno, M. Kamiya, T. Yoshihara, K. Sugawara, K. Okabe, M. C. Tarhan, H. Fujita, T. Funatsu, Y. Okada, S. Tobita, and Y. Urano, “A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging,” Nat. Chem. 6, 681-689 (2014).
9. R. Mcgorty, J. Schnitzbauer, W. Zhang, and B. Huang, “Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy.” Opt. Lett. 39, 275-278 (2014).
10. H. P. Kao, and A. S. Verkman, “Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position.” Biophys. J. 67, 1291-1300 (1994).
11. G. Zhu, J. V. Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153-2159 (2005).
12. C. H. Lien, C. Y. Lin, C. Y. Chang, and F. C. Chien, “Simulation design of wide-field temporal-focusing multiphoton excitation with a tunable excitation wavelength,” OSA Continuum 2, 1174-1187 (2019).
13. M. Brossard, J. F. Sauvage, M. Perrin, and E. Abraham, “Terahertz adaptive optics with a deformable mirror,” Opt. Lett. 43, 1594-1597 (2018).
14. M. Žurauskas, I. M. Dobbie, R. M. Parton, M. A. Phillips, A. Göhler, I. Davis, and M. J. Booth, “IsoSense: frequency enhanced sensorless adaptive optics through structured illumination,” Optica 6, 370-379 (2019).

15. P. Török, S. J. Hewlett, and P. Varga. “The role of specimen‐induced spherical aberration in confocal microscopy,” J. Microsc. 188, 158-172 (1997).
16. B. Wang, and M. J. Booth, “Optimum deformable mirror modes for sensorless adaptive optics,” Opt. Commun. 282, 4467-4474 (2009).
17. I. Izeddin, M. E. Beheiry, J. Andilla, D. Ciepielewski, X. Darzacq, and M. Dahan, “PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking,” Opt. Express 20, 4957-4967 (2012).
18. M. Booth, D. Andrade, D. Burke, B. Patton, and M. Zurauskas, “Aberrations and adaptive optics in super-resolution microscopy,” Microscopy 64, 251-261 (2015).
19. D. Burke, B. Patton, F. Huang, J. Bewersdorf, and M. J. Booth, “Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy,” Optica 2, 177-185 (2015).
20. L. Huang, and C. Rao, “Wavefront sensorless adaptive optics: a general model-based approach,” Opt. Express 19, 371-379 (2011).
21. M. J. Mlodzianoski, P. J. Cheng-Hathaway, S. M. Bemiller, Tyler J. McCray, S. Liu, D. A. Miller, B. T. Lamb, G. E. Landreth, and F. Huang, “Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections,” Nat. Methods 15, 583-586 (2018).
22. C. H. Lien, G. Abrigo, P. H. Chen, and F. C. Chien, “Two-color temporal focusing multiphoton excitation imaging with tunable-wavelength excitation,” J. Biomed Opt. 22, 026008 (2017).
23. M. J. Rust, M. Bates, and X. Zhuang, “Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution,” Nature methods 3, 793 (2006).
24. M. Bates, T. R. Blosser, X. Zhuang, “Short-range spectroscopic ruler based on a single-molecule optical switch,” Phys. Rev. Lett. 94, 108101 (2005).
25. N. Ji, “Adaptive optical fluorescence microscopy,” Nat. Methods 14, 374-380 (2017).
26. L. Zhu, P. C. Sun, D. U. Bartsch, W. R. Freeman, and Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38, 168-176 (1999).
27. L.J. Hornbeck, “Deformable mirror light modulator,” U.S. Patent 4, 441-791 (1984).
28. L. J. Hornbeck, “Multi-level deformable mirror device,” U.S. Patent 5, 833-857 (1992).
29. D. L. Gordon, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517-1524 (1997).
31. D. J. Wahl, Y. Jian, S. Bonora, R. J. Zawadzki, and M. V. Sarunic, “Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice,” Biomed. Opt. Express 7, 1-12 (2016).
32. B. C. Platt, and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17,573-S577 (2001).
33. J. Liang, B. Grimm, S Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” JOSA A 11, 1949-1957 (1994).
34. D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” presented at Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components, U.S.A., November 2002.
35. M. J. Saxton, “Single-particle tracking: the distribution of diffusion coefficients,” Biophys. J. 72, 1744-1753 (1997).
36. S. F. Gibson, and F. Lanni, “Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy,” JOSA A 8, 1601-1613 (1991).
37. M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12, 6540-6552 (2004).
38. P. Török, S. J. Hewlett, and P. Varga. “The role of specimen‐induced spherical aberration in confocal microscopy,” J. Microsc. 188, 158-172 (1997).
39. P. Yang, W. Yang, Y. Liu, S. Hu, M. Ao, B. Xu, and W. Jiang, “19-element sensorless adaptive optical system based on modified hill-climbing and genetic algorithms,” presented at 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, U.S.A., November 2007.
40. Y. Liu, J. Ma, B. Li, and J. Chu, “Hill-climbing algorithm based on Zernike modes for wavefront sensorless adaptive optics,” Opt. Eng. 52, 016601 (2013).
41. S. P. Poland, A. J. Wright, and J. M. Girkin, “Evaluation of fitness parameters used in an iterative approach to aberration correction in optical sectioning microscopy,” Appl. Opt. 47, 731-736 (2008).
42. T. A. Planchon, W. Amir, J. J. Field, C. G. Durfee, J. A. Squier, P. Rousseau, O. Albert, and G. Mourou, “Adaptive correction of a tightly focused, high-intensity laser beam by use of a third-harmonic signal generated at an interface,” Opt. Lett. 31, 2214-2216 (2006).
43. H. Ma, Q. Zhou, X. Xu, S. Du, and Z. Liu, “Full-field unsymmetrical beam shaping for decreasing and homogenizing the thermal deformation of optical element in a beam control system,” Opt. Express 19, 1037-1050 (2011).
44. P. Piatrou, and M. Roggemann, “Beaconless stochastic parallel gradient descent laser beam control: numerical experiments,” Appl. Opt. 46, 6831-6842 (2007).

45. S. Zommer, E. N. Ribak, S. G. Lipson, and J. Adler, “Simulated annealing in ocular adaptive optics,” Opt. Lett. 31, 939-941 (2006).
46. R. E. Agmy, H. Bulte, A. H. Greenaway, and D. T. Reid, “Adaptive beam profile control using a simulated annealing algorithm,” Opt. Express 13, 6085-6091 (2005).
47. F. Zernike, “Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode,” Physica 1, 689-704 (1934).
48. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” JOSA 66, 207-211 (1976).
49. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotech. 21, 1369-1377 (2003).
50. B. R. Masters, P. T. So, and E. Gratton. “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72, 2405-2412 (1997).
51. G. H. Patterson, and D. W. Piston. “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78, 2159-2162 (2000).
52. D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16, 1055–1069 (1976).
53. P. Roux, and M. Fink, “Time reversal in a waveguide: Study of the temporal and spatial focusing,” J. Acoust. Soc. Am. 107, 2418-2429 (2000).
54. L. Rayleigh, “Investigations in optics, with special reference to the spectroscope,” Science 8, 261-274 (1879).
55. S. Proppert, S. Wolter, T. Holm, T. Klein, S. Linde, and M. Sauer, “Cubic B-spline calibration for 3D super-resolution measurements using astigmatic imaging,” Opt. Express 22, 10304-10316 (2014).
56. R. Mostany, A. Miquelajauregui, M. Shtrahman, and C. Cailliau, “Two-photon excitation microscopy and its applications in neuroscience,” presented at Advanced Fluorescence Microscopy, New York, NY, 2015.
57. So, Peter TC, Elijah YS Yew, and Christopher Rowlands, “High-throughput nonlinear optical microscopy,” Biophy. J. 105, 2641-2654 (2013).
58. G. Patterson, M. Davidson, S. Manley, and L. S. Jennifer, “Superresolution imaging using single-molecule localization,” Annu Rev Phys Chem 61, 345-367 (2010).
59. B. Antal, and András Hajdu. “A stochastic approach to improve macula detection in retinal images,” Acta Cybernetica 20, 5-15 (2011).
指導教授 簡汎清 孫慶成(Fan-Ching Chien Ching-Cherng Sun) 審核日期 2020-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明