博碩士論文 107232003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.239.192.241
姓名 陳思源(Sih-Yuan Chen)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 複雜波前體積全像強繞射計算模型之研究
(Study of model for strong volume hologram with complex wavefront)
相關論文
★ 利用編碼孔徑之高亮度高光譜成像系統★ 應用DMD提高幀率之數位光學相位共軛投影系統之研究
★ 應用四步相移解碼多階相位之消除碟片位移雜訊之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 本論文提出一個作為複雜波前體積全像光學元件的強繞射計算模型,企圖以結合相位疊加法與耦合波理論的特性來解決複雜體積全像之絕對繞射效率計算之問題。我們以孫慶成教授所提的相位疊加法的相位不匹配因子來對應耦合波理論的耦合強度因子,再結合上述二種理論模型來計算繞射光在空間上的分布。在模擬與實驗中,我們針對相位匹配和相位不匹配兩種情況進行強繞射現象的分析,並討論不同耦合強度對於繞射光在空間中分布的變化與布拉格選擇性的影響。
摘要(英) In this thesis, we proposed a strong diffraction model for a volume holographic optical element with complex wavefront. We try to make a connection between the phase mismatch factor of the VOHIL model by Prof. Sun and the coupling strength factor of couple mode theory. Based on these two models, we calculation the diffraction distribution from the complex volume hologram. In the simulation and the corresponding experiment, we analyze the diffraction of strong volume hologram with phase match and phase mismatch. Finally, we study the variation of the diffraction distribution and Bragg selectivity with different coupling strengths.
關鍵字(中) ★ 體積全像光學元件
★ 強繞射
★ 相位不匹配
★ 耦合強度
★ 布拉格選擇性
關鍵字(英) ★ volume holographic optical element
★ strong diffraction
★ phase mismatch
★ coupling strength
★ Bragg selectivity
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xvi
第一章 緒論 1
1-1 全像術之發展 1
1-2 全像術簡介 2
1-3 體積全像光學元件 7
1-4 研究動機與目的 8
1-5 論文大綱與安排 10
第二章 理論介紹 12
2-1 布拉格條件 12
2-2 耦合波理論 18
2-2-1 布拉格匹配 22
2-2-2 布拉格不匹配 24
2-3 波恩近似法 28
2-4 相位疊加法 32
2-5 Q參數 (節錄自孫慶成教授之手稿) 36
第三章 計算模型的建立 43
3-1 耦合強度因子 43
3-1-1 折射率變化 45
3-1-2 交互作用長度 57
3-2 相位不匹配因子 58
3-2-1 角度偏移 62
3-2-2 波長偏移 65
3-3 計算方法 71
第四章 複雜波前強繞射現象分析 76
4-1 參數設定 76
4-2 耦合強度的影響 78
4-2-1 相位匹配 79
4-2-2 相位不匹配 84
4-3 總結 99
第五章 結論 101
附錄A 103
參考文獻 106
中英文名詞對照表 111
參考文獻 1. D. Gabor, “A New Microscopic Principle,” Nature 161, 777-778 (1948).
2. D. Gabor, “Microscopy by reconstructed wavefronts,” Proc. R. Soc. 197, 454-487 (1949).
3. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, New York, 1971).
4. E. N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Communication Theory,” J. Opt. Soc. Am. 52, 1123-1130 (1962).
5. S. A. Benton, “On a method for reducing the information content of holograms,” J. Opt. Soc. Am. 59, 1545A (1969).
6. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “OPTICALLY‐INDUCED REFRACTIVE INDEX INHOMOGENEITIES IN LiNbO3 AND LiTaO3,” Appl. Phys. Lett. 9, 72 (1966).
7. F. S. Chen, “Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389–3396 (1969).
8. J. Feinberg and R. W. Hellwarth, “Phase-conjugating mirror with continuous-wave gain,” Opt. Lett. 5, 519-521 (1980).
9. J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486-488 (1982).
10. D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752-1759 (1988).
11. P. Yeh, A. E. chiou, J. Hong, P. Beckwith, T. Chang, and M. Khoshnevisan, “Photorefractive nonlinear optics and optical computing,” Opt. Eng. 28, 328-343 (1989).
12. D. Z. Abderson and J. Feinberg, “Optical novelty filters,” IEEE J. Quan. Electro. 25, 635-647 (1989).
13. C. C. Sun, M. W. Chang, and K.Y. Hsu, “Matrix–matrix multiplication by using anisotropic self-diffraction in BaTiO3,” Appl. Opt. 33, 4501-4507 (1994).
14. D. Psaltis and N. Farhat, “Optical information processing based on an associative-memory model of neural nets with thresholding and feedback,” Opt. Lett. 10, 98-100 (1985).
15. P. Yeh, A. E. T. Chiou, and J. Hong, “Optical interconnection using photorefractive dynamic holograms,” Appl. Opt. 27, 2093-2096 (1988).
16. E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic Data Storage in Three-Dimensional Media,” Appl. Opt. 5, 1303-1311 (1966).
17. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume Holographic Storage and Retrieval of Digital Data,” Science 265, 749-752 (1994).
18. G. T. Sincerbox, Selected Papers on Holographic Storage (SPIE, Washington, 1994).
19. D. Psaltis and F. Mok, “Holographic Memories,” Sci. Am. 23, 70-76 (1995).
20. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000).
21. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. i. steady state,” Ferroelectrics 22, 949-960 (1978).
22. W. R. Klein, “Theoretical efficiency of Bragg devices,” Proc. IEEE 54, 803-804 (1966).
23. C. C. Sun and P. P. Banerjee, “Volume Holographic Optical Elements,” Opt. Eng. 43, 1957-1958 (2004).
24. P. J. van Heerden, “Theory of Optical Information Storage in Solids,” Appl. Opt. 2, 393-400 (1963).
25. J. T. LaMacchia and D. L. White, “Coded Multiple Exposure Holograms,” Appl. Opt. 7, 91-94 (1968).
26. C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171-176 (1991).
27. F. T. S. Yu, S. Wu, A. W. Mayers, and S. Rajan, “Wavelength multiplexed reflection matched spatial filters using LiNbO3,” Opt. Commun. 81, 343-347 (1991).
28. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471-1473 (1992).
29. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915-917 (1993).
30. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782-784 (1995).
31. C. C. Sun, R. H. Tsou, W. Chang, and J. Y. Chang, “Random phase-coded multiplexing of hologram volumes using ground glass,” Opt. Quantum Electron. 28, 1551-1561 (1996).
32. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403-2417 (1996).
33. C. C. Sun, W. C. Su, Y. L. Lin, Y. Ouyang, S. P. Yeh, and B. Wang, “Three Dimensional Shifting Sensitivity of a Volume Hologram with Spherical Reference Waves,” Opt. Mem. Neural Netw. 8, 229-236 (1999).
34. G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811-813 (1999).
35. C. C. Sun, W. C. Su, B. Wang, and Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67-74 (2000).
36. C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253-1260 (2001).
37. G. Barbastathis and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811-813 (1999).
38. C. C. Sun, Y. M. Chen, and W. C. Su, “All-optical fiber sensing system based on random phase encoding and volume holographic interconnection,” Opt. Eng. 40, 160-161 (2001).
39. J. H. Chen, D. C. Su, and J. C. Su, “Holographic spatial walk-off polarizer and its application to a 4-port polarization-independent optical circulator,” Opt. Express 11, 2001-2006 (2003).
40. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photon. 2, 110-115 (2008).
41. S. B. Oh, Z. Q. J. Lu, J. C. Tsai, H. H. Chen, G. Barbastathis, and Y. Luo, “Phase-coded volume holographic gratings for spatial-spectral imaging filters,” Opt. Lett. 38, 477-479 (2013).
42. Y. Luo, P. J. Gelsinger-Austin, J. M. Watson, G. Barbastathis, J. K. Barton, and R. K. Kostuk, “Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial–spectral imaging system,” Opt. Lett. 33, 2098-2100 (2008).
43. Y. W. Yu, S. Y. Chen, C. C. Lin, and C. C. Sun, “Inverse focusing inside turbid media by creating an opposite virtual objective,” Sci. Rep. 6, 29452 (2016).
44. B. Wang and C. C. Sun, “Precise measurement of thermal-induced refractive-index change in BaTiO3 on the basis of anisotropic self-diffraction,” Appl. Opt. 40, 672-677 (2001).
45. J. O. White and A. Yariv, “Real‐time image processing via four‐wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5-7 (1980).
46. F. T. S. Yu, S. Wu, A. Mayers, and S. Rajan, “Wavelength multiplexed reflection matched spatial filters using LiNbO3,” Opt. Commun. 81, 343-347 (1991).
47. S. F. Chen, C. S. Wu, and C. C. Sun, “Design for a high dense wavelength division multiplexer based on volume holographic gratings,” Opt. Eng. 43, 2028-2033 (2004).
48. C. C. Sun, M. W. Chang, and K.Y. Hsu, “Matrix-matrix multiplication by using anisotropic self-diffraction in BaTiO3,” Appl. Opt. 33, 4501-4507 (1994).
49. C. C. Sun, R. H. Tsou, W. Shen, H. H. Chang, J. Y. Chang, and M. W. Chang, “Shearing interferometer by using Kitty self-pumped phase-conjugate mirror,” Appl. Opt. 35, 1815-1819 (1996).
50. C. C. Lin, Y. W. Yu, C. Y. Cheng, and C. C. Sun, “Discovery of a self-pumped, phase-conjugate mirror with high speed, high image quality, and large accepted incidence area,” Opt. Eng. 54, 023101 (2015).
51. W. C. Su and C. C. Sun, “Optical pattern interconnections using random phase encoding in volume holograms”, Opt. Commun. 213, 259-265 (2002).
52. C. C. Sun, C. Y. Hsu, W. C. Su, Y. Ouyang, and J. Y. Chang, “A novel algorithm for high sensitivity in measuring surface variation based on volume holography,” Microwave Opt. Technol. Lett. 34, 319-321 (2002).
53. 柯婉琇,"《國際產業》收購Akonia,蘋果AR 眼鏡逐漸成形",時報資訊 (2018)。
54. J. W. Goodman, Introduction to Fourier Optics, 3rd eds. (McGraw-Hill, New York, 2002).
55. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Sys. Technol. J. 48, 2909-2947 (1969).
56. C. C. Sun, “A Simplified Model for Diffraction Analysis of Volume Holograms,” Opt. Eng. 42, 1184-1185 (2003).
57. C. Gu, J. Hong, I. McMichael, R. Saxena, and F. Mok, “Crosstalk-limited storage capacity of volume holographic memory,” J. Opt. Soc. Am. A 9, 1978-1983 (1992).
58. C. C. Sun, Y. W. Yu, and T. H. Yang, “Volume Holographic Optical elements: Introduction and Applications,” presented at the Twelve International Workshop on Holography and related technologies, Suzhou, China, 30 November 2018.
59. D. J. Griffiths, Introduction to Electrodynamics, 3rd ed. (Prentice Hall, New Jersey, 1999).
60. P. Yeh, Introduction to photorefractive nonlinear optics (Wiley, New York, 1993).
61. J. H. Hong, P. Yeh, D. Psaltis, and D. Brady, “Diffraction efficiency of strong volume holograms,” Opt. Lett. 15, 344-346 (1990).
62. 孫慶成,鈦酸鋇之光折非均向繞射與應用之研究,國立中央大學光電所博士論文,中華民國八十二年。
63. T. A. Shankoff, “Phase Holograms in Dichromated Gelatin,” Appl. Opt. 7, 2101-2105 (1968).
64. N. George and J. W. Matthews, “Holographic diffraction gratings,” Appl. Phys. Lett. 9, 212-215 (1966).
65. C. C. Sun, M. W. Chang, and K. Y. Hsu, “Contrast-reversible photorefractive incoherent-to-coherent optical converter by using an anisotropic strong volume hologram,” Opt. Lett. 18, 655-657 (1993).
66. C. C. Sun, M. W. Chang, and K. Y. Hsu. “Anisotropic strong volume hologram in BaTiO3,” Opt. commun. 119, 597-603 (1995).
67. 杜宗誠,光折變相位光柵強度之量測,中原大學應用物理所碩士論文,中華民國八十八年。
68. M. V. Hobdem and J. Warner, “The temperature dependence of the refractive indices of pure lithium niobate,” Phys. Lett. 22, 243-244 (1966).
69. 孫慶成,光電工程概論,全華圖書股份有限公司,中華民國一百零一年。
指導教授 孫慶成 楊宗勳 余業緯(Ching-Cherng Sun Tsung-Hsun Yang Yeh-Wei Yu) 審核日期 2020-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明