博碩士論文 107282001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.15.156.140
姓名 莊翔淯(Xiang-Yu Zhuang)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Aliivibrio fischeri in Motion)
相關論文
★ 多細菌鞭毛馬達的同步轉動量測★ Investigating Stators Assembly of Flagellar Motors in Escherichia Coli by PALM
★ 被動粒子在不同的流體型態★ Lab on the Agar Plates
★ Probing the Physical Environments of Bacterial Swarm Colony★ Spiral-coil Formation in Semi-flexible Self-propelled Chain System
★ Real-Time Measurement of Vibrio alginolyticus Polar Flagellar Growth★ Foraging behavior of Caenorhabditis elegans
★ Jamming State of Active Nematics★ Probing Escherichia coli Energetics under Starvation by Single-Cell Measurements
★ Probing Cell Wall Synthetic Dynamics by Bacterial Flagellar Motor in Escherichia coli★ Dynamics of sodium-driven stator units in bacterial flagellar motors
★ 高密度二維群游細菌系統之動力學★ Deformation Dynamics of Active 2D Tetragonal Pseudo-Crystal
★ Probing Ion-Flux of Bacterial Flagellar Motors by Correlative Microscopy★ 主動粒子的擴張行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 許多細菌的運動來自於細菌鞭毛馬達。細菌鞭毛馬達是由轉子、定子和鞭毛透過自我組裝機制所構成的動力機械裝置。細菌鞭毛馬達藉由離子電動勢產生能量而進一步推動細菌鞭毛馬達旋轉,旋轉的細菌鞭毛馬達帶動細菌鞭毛在流體中產生剪力形成推進力。此外,鞭毛馬達的旋轉方向具有可切換性。當細菌體內的趨化蛋白和轉子產生鍵結,轉子的結構會產生形變,使細菌鞭毛馬達可以順時鐘旋轉或是逆時鐘旋轉。細菌鞭毛馬達藉由雙旋轉態便可以更有效率的克服熱擾動產生長距離的移動和空間探索。
本論文主要探索細菌的鞭毛運動行為和化學趨向性的研究。因此,在研究工具上必須建立「避免邊界效應干擾」的三維立體空間追跡和「細菌鞭毛運動狀態」的視覺化方法。首先,我們引入球面像差在一般的相位差顯微鏡上,使得點擴散函數在縱向產生不對稱性。因此,擷取到的影像便可以藉由已知的系統點擴散函數計算二維相關函數而重建立體軌跡資訊。然而,寬度約為20奈米的細菌鞭毛過於纖細導致對比度不足,使得一般光學顯微鏡無法輕易的觀察。因此,我們巧妙地選用帶有「鞘」的細菌鞭毛;「鞘」為外膜延伸覆蓋到細菌鞭毛上,所以其成份類似細胞膜的脂質。基於這種先天的性質,這類的細菌鞭毛便可以使用厭水性的螢光染料FM1-43標定細菌鞭毛。但是,細菌馬達的轉速非常快(大約幾百赫茲),所以大部分的科研相機都必須透過縮小觀察視野才能提升相機的幀率,而「觀察視野不足」對於研究細菌的游泳是個致命的問題。於是,我們開發了一套「頻閃照明方法」:使用資料擷取系統產生脈寬調變訊號,然後同步控制相機拍照跟激發光源的曝光時間長度。這種拍攝方式的最大優點在於:可以在相機幀率不高(33-100赫茲)的情況下,保持最大的觀察視野,並且清楚地記錄此刻(150-200微秒)的鞭毛運動組態。
目前已知的細菌游泳模式有大腸桿菌的「前進和翻滾」、溶藻弧菌的「前進、後退和偏折」以及有些菌會「纏繞」。這些不同的細菌使用不同的運動策略更有效率地達成生物上的目標。本論文選用費氏弧菌作為研究的生物系統。它具有多條鞭毛,鞭毛的出現位置不像大腸桿菌分散在身體周圍,而是像溶藻弧菌集中在身體的其中一端。透過我們建立的分析方法,我們發現費氏弧菌:(1.)前進和後退的游泳速率是不一樣的;(2.)在不同黏稠程度的環境採取不同的運動策略,低黏稠環境是採用「前進和後退」模式,而高黏稠環境採用「前進和纏繞」模式;(3.)在高黏稠環境並且所有鞭毛馬達同步旋轉方向時,發現全新的「纏繞」游泳模式:在「纏繞」狀態使細菌鞭毛構型可以直接左右旋構型轉換,而大幅延長倒退的時間。最後,我們完整地建立費氏弧菌的運動模式轉換關係,並且透過數值模擬的方式揭露出:在高黏滯的環境,費氏弧菌大幅度延長倒退時間的行為是為了更有效率的增加化學趨向的能力。
摘要(英) Many motile bacteria are driven by the bacterial flagellar motor (BFM). The BFM consists of a rotor, a stator, and a filament through a self-assembly mechanism. The BFM is powered by a specific ion motive force (IMF) that generates torque and propulsion for the bacteria. Also, a BFM is a rotational switchable two-state motor. The rotor switches between counterclockwise/clockwise (CCW/CW) rotation when intracellular chemotaxis signaling proteins bind/unbind to the rotor of the BFM (C-ring). As a result, bacteria can overcome thermal fluctuations and navigate a wide range of environments.
In this thesis, we aim to study the motility and chemotaxis of lophotrichous bacteria. We have developed a 3-dimensional tracking method and real-time visualization of flagella during swimming. In phase-contrast 3D tracking, we introduce spherical distortion into phase-contrast microscopy to induce the point spread function (PSF) asymmetry on the z-axis. The z-position of bacteria can be mapped by computing the 2D cross-correlation between the target image and the pre-labeled depth database. Therefore, we can reconstruct spatial trajectory information. However, standard optical microscopes cannot easily observe these 20 nm thin flagellar filaments due to the low scattering cross-section. Therefore, we take the advantage of sheathed flagella that is contiguous with the outer membrane for rapid fluorescence labeling by the lipophilic dye. To capture the flagellar filament configuration during the swimming at several hundred Hz rotations in the wild field of view, we developed the strobe lighting method. We integrate and synchronize cameras and lights through NI-DAQ. Send a series of pulse-width modulation (PWM) signals through NI-DAQ to trigger the devices simultaneously. Thus, we can achieve the imaging of a large field of view (> 1024 pixels) at low frame rates (< 100 Hz) with clear rotating flagellar filament configuration within 200 microseconds (> 5000 Hz).
Known swimming patterns are run-and-tumble in Escherichia coli, run-reverse in Vibrio alginolyticus, and push-wrap in some bacteria. Different swimming patterns allow bacteria to efficiently navigate various environments. We chose A. fischeri, which is a lophotrichous system, as our study system. We discovered two alternative speeds for forward and backward motion through phase-contrast 3D tracking. Then, A. fischeri faced low- and high-viscosity environments using push-pull and push-wrap modes. In addition, A. fischeri synchronizes motor switching and polymorphic changes to prolong backward duration. Finally, we constructed a complete swimming pattern of A. fischeri by fluorescence strobe illumination microscopy. Our simulations then showed that prolonged backward run time enables efficient chemotactic navigation at high viscosity.
關鍵字(中) ★ 細菌運動
★ 費氏弧菌
★ 單分子追蹤
★ 頻閃照明方法
關鍵字(英) ★ Bacterial motility
★ Aliivibrio fischeri
★ Single-cell tracking
★ Strobe illumination method
論文目次 摘要 i
Abstract ii
Acknowledgment iii
Contents iv
List of Figures vii
List of Tables xii
1. Background 1
1.1. Bacterial Flagellar Motor System 3
1.1.1. Configuration 3
1.1.2. Switching mechanism of BFM 6
1.1.3. Propulsion force from a flagellum 7
1.1.4. Flagellar polymorphic transform 10
1.2. Swimming Patterns 13
1.2.1. Run-and-Tumble 16
1.2.2. Run-Reverse-Flick 17
1.2.3. Push-Wrap 18
1.2.4. Others 20
1.3. Summary 21
2. The profiles of A. fischeri 23
2.1. The host-symbiont system 23
2.2. Incubation Protocol 25
2.3. The Contour Analysis of Bacteria 26
2.4. Flagellar Visualization 28
2.4.1. Review of fluorescent labeling 29
2.4.2. Sheathed flagellar filament 31
2.4.3. Phototoxic by FM-dye 33
2.5. Flagellar Regulation 35
2.6. Summary 40
3. Reconstruct Spatial Paths 41
3.1. Single Particle Tracking 43
3.1.1. Phase contrast microscopy 43
3.1.2. Induce spherical aberration to label z position 45
3.1.3. Construct a depth library by bacteria 47
3.2. Extract Information from Trajectories 48
3.3. Summary 51
4. A. fischeri in Motion 52
4.1. Speed Modulation 52
4.1.1. Two alternative swimming speeds 52
4.1.2. Speed fluctuation 55
4.1.3. Discussion 60
4.2. Revisit Speed Modulation 61
4.2.1. Fluorescence strobe microscopy 61
4.2.2. Two alternative speeds 64
4.2.3. A transition from the pull mode to the wrap mode 66
4.2.4. CW-CCW transition in the wrap mode 69
4.2.5. A transition from the wrap mode to the push mode 70
4.2.6. Discussion 72
4.3. Environmental factors 73
4.3.1. Swimming in chemotactic gradient 73
4.3.2. Swimming in the viscous environment 77
4.3.3. Chemotaxis in the high viscous environment 80
4.4. Summary 81
5. Numerical Simulation 82
5.1. Simulate a virtual A. fischeri 82
5.2. Determine Psync and K 85
5.3. Efficient navigation in high viscosity 86
5.4. Summary 91
6. Conclusions 92
7. Outlook 94
Reference 95
Appendix 105
A. Materials and Methods 105
A.1. Used strains 105
A.2. Formula of medium and buffer 105
A.3. Incubation protocol 107
A.4. Making frozen stocks 107
A.5. Fluidic chamber preparation 108
A.6. Fluorescence staining protocol 109
A.7. The microscopic configurations 109
A.8. Back-focal plane detection (BFPD) 110
B. Test of Measurement Systems 111
B.1. 3D Localization test 111
B.2. Non-rotation object under BFPD 112
C. Bacterial Boundary Equation 113
D. 3-dimensional Tracking Procedure 117
D.1. Build a depth library 117
D.2. Tracking spatial trajectory 118
D.3. Fluorescence analysis 119
E. The Statistics of Used Data 120
F. Analysis Codes 122
F.1. The configurations of the analysis environment 122
F.2. The functions and details of customized codes 123
G. The Simulation Process 124
G.1. Configuration of chemotaxis simulation 124
參考文獻 1. Milo, R., What is the total number of protein molecules per cell volume? A call to rethink some published values. Bioessays, 2013. 35(12): p. 1050-5.
2. Milo, R. and R. Phillips, Cell biology by the numbers. 2015: Garland Science.
3. Iino, T., Assembly of Salmonella flagellin in vitro and in vivo. J Supramol Struct, 1974. 2(2-4): p. 372-84.
4. Zhao, Z., et al., Frequent pauses in Escherichia coli flagella elongation revealed by single cell real-time fluorescence imaging. Nature Communications, 2018. 9(1): p. 1885.
5. Renault, T.T., et al., Bacterial flagella grow through an injection-diffusion mechanism. Elife, 2017. 6.
6. Chen, M., et al., Length-dependent flagellar growth of Vibrio alginolyticus revealed by real time fluorescent imaging. eLife, 2017. 6: p. e22140.
7. Turner, L., A.S. Stern, and H.C. Berg, Growth of flagellar filaments of Escherichia coli is independent of filament length. J Bacteriol, 2012. 194(10): p. 2437-42.
8. Stern, A.S. and H.C. Berg, Single-file diffusion of flagellin in flagellar filaments. Biophys J, 2013. 105(1): p. 182-4.
9. Zhuang, X.Y., et al., Live-cell fluorescence imaging reveals dynamic production and loss of bacterial flagella. Mol Microbiol, 2020. 114(2): p. 279-291.
10. Zhu, S., et al., In situ structures of polar and lateral flagella revealed by cryo-electron tomography. J Bacteriol, 2019. 201(13).
11. Kaplan, M., et al., In situ imaging of the bacterial flagellar motor disassembly and assembly processes. Embo j, 2019. 38(14): p. e100957.
12. Ferreira, J.L., et al., γ-proteobacteria eject their polar flagella under nutrient depletion, retaining flagellar motor relic structures. PLoS Biol, 2019. 17(3): p. e3000165.
13. Kanbe, M., et al., Protease susceptibility of the Caulobacter crescentus flagellar hook-basal body: a possible mechanism of flagellar ejection during cell differentiation. Microbiology (Reading), 2005. 151(Pt 2): p. 433-438.
14. DeLoney-Marino, C.R., A.J. Wolfe, and K.L. Visick, Chemoattraction of Vibrio fischeri to serine, nucleosides, and N-acetylneuraminic acid, a component of squid light-organ mucus. Appl Environ Microbiol, 2003. 69(12): p. 7527-30.
15. Nyholm, S.V., et al., Roles of Vibrio fischeri and nonsymbiotic bacteria in the dynamics of mucus secretion during symbiont colonization of the Euprymna scolopes light organ. Appl Environ Microbiol, 2002. 68(10): p. 5113-22.
16. Nyholm, S.V., et al., Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc Natl Acad Sci U S A, 2000. 97(18): p. 10231-5.
17. Graf, J., P.V. Dunlap, and E.G. Ruby, Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J Bacteriol, 1994. 176(22): p. 6986-91.
18. Thormann, K.M., C. Beta, and M.J. Kühn, Wrapped up: the motility of polarly flagellated bacteria. Annu Rev Microbiol, 2022. 76: p. 349-367.
19. Grognot, M. and K.M. Taute, More than propellers: how flagella shape bacterial motility behaviors. Current Opinion in Microbiology, 2021. 61: p. 73-81.
20. Macnab, R.M., How bacteria assemble flagella. Annu Rev Microbiol, 2003. 57: p. 77-100.
21. Hennell James, R., et al., Structure and mechanism of the proton-driven motor that powers type 9 secretion and gliding motility. Nat Microbiol, 2021. 6(2): p. 221-233.
22. Santiveri, M., et al., Structure and function of stator units of the bacterial flagellar motor. Cell, 2020. 183(1): p. 244-257.e16.
23. Deme, J.C., et al., Structures of the stator complex that drives rotation of the bacterial flagellum. Nat Microbiol, 2020. 5(12): p. 1553-1564.
24. Lo, C.J., et al., Mechanism and kinetics of a sodium-driven bacterial flagellar motor. Proc Natl Acad Sci U S A, 2013. 110(28): p. E2544-51.
25. Furuno, M., et al., Characterization of polar-flagellar-length mutants in Vibrio alginolyticus. Microbiology (Reading), 1997. 143(5): p. 1615-1621.
26. Xue, R., et al., A delicate nanoscale motor made by nature-the bacterial flagellar motor. Adv Sci (Weinh), 2015. 2(9): p. 1500129.
27. Gabel, C.V. and H.C. Berg, The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force. Proceedings of the National Academy of Sciences, 2003. 100(15): p. 8748-8751.
28. Li, N., S. Kojima, and M. Homma, Sodium-driven motor of the polar flagellum in marine bacteria Vibrio. Genes Cells, 2011. 16(10): p. 985-99.
29. Hirota, N. and Y. Imae, Na+-driven flagellar motors of an alkalophilic Bacillus strain YN-1. J Biol Chem, 1983. 258(17): p. 10577-81.
30. Manson, M.D., et al., A protonmotive force drives bacterial flagella. Proceedings of the National Academy of Sciences, 1977. 74(7): p. 3060-3064.
31. Johnson, S., et al., Structure of the bacterial flagellar rotor MS-ring: a minimum inventory/maximum diversity system. 2019, bioRxiv.
32. Chevance, F.F. and K.T. Hughes, Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol, 2008. 6(6): p. 455-65.
33. Lele, P.P., et al., Mechanism for adaptive remodeling of the bacterial flagellar switch. Proceedings of the National Academy of Sciences, 2012. 109(49): p. 20018-20022.
34. Suzuki, H., K. Yonekura, and K. Namba, Structure of the rotor of the bacterial flagellar motor revealed by electron cryomicroscopy and single-particle image analysis. J Mol Biol, 2004. 337(1): p. 105-13.
35. Zhao, R., et al., FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body. J Mol Biol, 1996. 261(2): p. 195-208.
36. Thomas, D.R., et al., The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J Bacteriol, 2006. 188(20): p. 7039-48.
37. Murphy, G.E., J.R. Leadbetter, and G.J. Jensen, In situ structure of the complete Treponema primitia flagellar motor. Nature, 2006. 442(7106): p. 1062-4.
38. Takekawa, N., S. Kojima, and M. Homma, Contribution of many charged residues at the stator-rotor interface of the Na+-driven flagellar motor to torque generation in Vibrio alginolyticus. J Bacteriol, 2014. 196(7): p. 1377-85.
39. Blair, D.F., Flagellar movement driven by proton translocation. FEBS Lett, 2003. 545(1): p. 86-95.
40. Zhou, J., S.A. Lloyd, and D.F. Blair, Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci U S A, 1998. 95(11): p. 6436-41.
41. Lynch, M.J., et al., Co-folding of a FliF-FliG split domain forms the basis of the MS:C ring interface within the bacterial flagellar motor. Structure, 2017. 25(2): p. 317-328.
42. Ogawa, R., et al., Interaction of the C-terminal tail of FliF with FliG from the Na+-driven flagellar motor of Vibrio alginolyticus. J Bacteriol, 2015. 197(1): p. 63-72.
43. Yonekura, K., S. Maki-Yonekura, and K. Namba, Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature, 2003. 424(6949): p. 643-50.
44. Macnab, R.M., Type III flagellar protein export and flagellar assembly. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2004. 1694(1): p. 207-217.
45. Renault, T.T., A. Guse, and M. Erhardt, Export mechanisms and energy transduction in type-III secretion machines. Curr Top Microbiol Immunol, 2020. 427: p. 143-159.
46. Galán, J.E., et al., Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol, 2014. 68: p. 415-38.
47. Erhardt, M., K. Namba, and K.T. Hughes, Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harb Perspect Biol, 2010. 2(11): p. a000299.
48. Lee, P.C. and A. Rietsch, Fueling type III secretion. Trends Microbiol, 2015. 23(5): p. 296-300.
49. Paul, K., et al., Energy source of flagellar type III secretion. Nature, 2008. 451(7177): p. 489-92.
50. Minamino, T. and K. Namba, Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature, 2008. 451(7177): p. 485-488.
51. Lee, P.C., et al., Control of effector export by the Pseudomonas aeruginosa type III secretion proteins PcrG and PcrV. Mol Microbiol, 2010. 75(4): p. 924-41.
52. Wilharm, G., et al., Yersinia enterocolitica type III secretion: evidence for the ability to transport proteins that are folded prior to secretion. BMC Microbiol, 2004. 4: p. 27.
53. Galperin, M., P.A. Dibrov, and A.N. Glagolev, delta mu H+ is required for flagellar growth in Escherichia coli. FEBS Lett, 1982. 143(2): p. 319-22.
54. Zhuang, X.Y. and C.J. Lo, Construction and loss of bacterial flagellar filaments. Biomolecules, 2020. 10(11).
55. Kusumoto, A., et al., Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus. J Biochem, 2006. 139(1): p. 113-21.
56. Kuhlen, L., et al., Structure of the core of the type III secretion system export apparatus. Nat Struct Mol Biol, 2018. 25(7): p. 583-590.
57. Fukumura, T., et al., Assembly and stoichiometry of the core structure of the bacterial flagellar type III export gate complex. PLoS Biol, 2017. 15(8): p. e2002281.
58. Fabiani, F.D., et al., A flagellum-specific chaperone facilitates assembly of the core type III export apparatus of the bacterial flagellum. PLoS Biol, 2017. 15(8): p. e2002267.
59. Kojima, S. and D.F. Blair, The bacterial flagellar motor: structure and function of a complex molecular machine. Int Rev Cytol, 2004. 233: p. 93-134.
60. Berg, H.C., The rotary motor of bacterial flagella. Annu Rev Biochem, 2003. 72: p. 19-54.
61. Blair, D.F., How bacteria sense and swim. Annu Rev Microbiol, 1995. 49: p. 489-522.
62. Briegel, A., et al., Universal architecture of bacterial chemoreceptor arrays. Proc Natl Acad Sci U S A, 2009. 106(40): p. 17181-6.
63. Nakamura, S. and T. Minamino, Flagella-driven motility of bacteria. Biomolecules, 2019. 9(7).
64. Minamino, T., M. Kinoshita, and K. Namba, Directional switching mechanism of the bacterial flagellar motor. Comput Struct Biotechnol J, 2019. 17: p. 1075-1081.
65. Morimoto, Y.V. and T. Minamino, Structure and function of the bi-directional bacterial flagellar motor. Biomolecules, 2014. 4(1): p. 217-34.
66. Thomas, D.R., D.G. Morgan, and D.J. DeRosier, Rotational symmetry of the C ring and a mechanism for the flagellar rotary motor. Proceedings of the National Academy of Sciences, 1999. 96(18): p. 10134-10139.
67. Sakai, T., et al., Novel insights into conformational rearrangements of the bacterial Ffagellar switch complex. mBio, 2019. 10(2): p. e00079-19.
68. Paul, K., et al., A molecular mechanism of direction switching in the flagellar motor of Escherichia coli. Proc Natl Acad Sci U S A, 2011. 108(41): p. 17171-6.
69. Purcell, E.M., Life at low Reynolds number. American Journal of Physics, 1977. 45(1): p. 3-11.
70. GRAY, J. and G.J. HANCOCK, The propulsion of sea-urchin Spermatozoa. Journal of Experimental Biology, 1955. 32(4): p. 802-814.
71. Purcell, E.M., The efficiency of propulsion by a rotating flagellum. Proceedings of the National Academy of Sciences, 1997. 94(21): p. 11307-11311.
72. Chattopadhyay, S., et al., Swimming efficiency of bacterium Escherichia coli. Proc Natl Acad Sci U S A, 2006. 103(37): p. 13712-7.
73. Yamashita, I., et al., Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction. Nat Struct Biol, 1998. 5(2): p. 125-32.
74. Namba, K. and F. Vonderviszt, Molecular architecture of bacterial flagellum. Q Rev Biophys, 1997. 30(1): p. 1-65.
75. Calldine, C.R., Change of waveform in bacterial flagella: The role of mechanics at the molecular level. Journal of Molecular Biology, 1978. 118(4): p. 457-479.
76. Kamiya, R., et al., Transition of bacterial flagella from helical to straight forms with different subunit arrangements. J Mol Biol, 1979. 131(4): p. 725-42.
77. Hasegawa, K., I. Yamashita, and K. Namba, Quasi- and nonequivalence in the structure of bacterial flagellar filament. Biophys J, 1998. 74(1): p. 569-75.
78. Popp, P.F. and M. Erhardt, Supercoiled filaments propel them all. Cell, 2022. 185(19): p. 3461-3463.
79. Kreutzberger, M.A.B., et al., Convergent evolution in the supercoiling of prokaryotic flagellar filaments. Cell, 2022. 185(19): p. 3487-3500.e14.
80. Srigiriraju, S.V. and T.R. Powers, Model for polymorphic transitions in bacterial flagella. Phys Rev E Stat Nonlin Soft Matter Phys, 2006. 73(1 Pt 1): p. 011902.
81. Turner, L., W.S. Ryu, and H.C. Berg, Real-time imaging of fluorescent flagellar filaments. Journal of bacteriology, 2000. 182(10): p. 2793-2801.
82. Ma, S., R. Zhang, and J. Yuan, Observation of broken detailed balance in polymorphic transformation of bacterial flagellar filament. Biophysical Journal, 2022. 121(12): p. 2345-2352.
83. Shah, D.S., et al., The flagellar filament of Rhodobacter sphaeroides: pH-induced polymorphic transitions and analysis of the fliC gene. J Bacteriol, 2000. 182(18): p. 5218-24.
84. Armitage, J.P., et al., Transformations in flagellar structure of Rhodobacter sphaeroides and possible relationship to changes in swimming speed. J Bacteriol, 1999. 181(16): p. 4825-33.
85. Lauga, E., Bacterial hydrodynamics. Annual Review of Fluid Mechanics, 2016. 48(1): p. 105-130.
86. Kudo, S., et al., Asymmetric swimming pattern of Vibrio alginolyticus cells with single polar flagella. FEMS Microbiol Lett, 2005. 242(2): p. 221-5.
87. Son, K., J.S. Guasto, and R. Stocker, Bacteria can exploit a flagellar buckling instability to change direction. Nature Physics, 2013. 9(8): p. 494-498.
88. Xie, L., et al., Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis. Proc Natl Acad Sci U S A, 2011. 108(6): p. 2246.
89. Berg, H.C. and D.A. Brown, Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature, 1972. 239(5374): p. 500-504.
90. Berg, H.C., E. coli in Motion. 2004: Springer.
91. Lovely, P.S. and F.W. Dahlquist, Statistical measures of bacterial motility and chemotaxis. J Theor Biol, 1975. 50(2): p. 477-96.
92. Taktikos, J., H. Stark, and V. Zaburdaev, How the motility pattern of bacteria affects their dispersal and chemotaxis. PLoS One, 2013. 8(12): p. e81936.
93. Darnton, N.C., et al., On torque and tumbling in swimming Escherichia coli. J Bacteriol, 2007. 189(5): p. 1756-64.
94. Tusk, S.E., N.J. Delalez, and R.M. Berry, Subunit exchange in protein complexes. J Mol Biol, 2018. 430(22): p. 4557-4579.
95. Taylor, B.L. and D.E. Koshland, Jr., Reversal of flagellar rotation in monotrichous and peritrichous bacteria: generation of changes in direction. J Bacteriol, 1974. 119(2): p. 640-2.
96. Taute, K.M., et al., High-throughput 3D tracking of bacteria on a standard phase contrast microscope. Nature Communications, 2015. 6(1): p. 8776.
97. Altindal, T., L. Xie, and X.L. Wu, Implications of three-step swimming patterns in bacterial chemotaxis. Biophys J, 2011. 100(1): p. 32-41.
98. Stocker, R., Reverse and flick: Hybrid locomotion in bacteria. Proceedings of the National Academy of Sciences, 2011. 108(7): p. 2635-2636.
99. Kühn Marco, J., et al., Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps. Proceedings of the National Academy of Sciences, 2017. 114(24): p. 6340-6345.
100. Tian, M., et al., A new mode of swimming in singly flagellated Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 2022. 119(14): p. e2120508119.
101. Hintsche, M., et al., A polar bundle of flagella can drive bacterial swimming by pushing, pulling, or coiling around the cell body. Scientific Reports, 2017. 7(1): p. 16771.
102. Kinosita, Y., et al., Unforeseen swimming and gliding mode of an insect gut symbiont, Burkholderia sp. RPE64, with wrapping of the flagella around its cell body. Isme j, 2018. 12(3): p. 838-848.
103. Atsumi, T., et al., Effect of viscosity on swimming by the lateral and polar flagella of Vibrio alginolyticus. J Bacteriol, 1996. 178(16): p. 5024-6.
104. Kawagishi, I., et al., The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Mol Microbiol, 1996. 20(4): p. 693-9.
105. Pfeifer, V., et al., Role of the two flagellar stators in swimming motility of Pseudomonas putida. bioRxiv, 2022: p. 2022.08.03.502738.
106. Park, J., et al., Modeling of lophotrichous bacteria reveals key factors for swimming reorientation. Scientific Reports, 2022. 12(1): p. 6482.
107. Kinosita, Y., et al., Direct observation of rotation and steps of the archaellum in the swimming halophilic archaeon Halobacterium salinarum. Nature Microbiology, 2016. 1(11): p. 16148.
108. Liu, B., et al., Helical motion of the cell body enhances Caulobacter crescentus motility. Proceedings of the National Academy of Sciences, 2014. 111(31): p. 11252-11256.
109. Kühn, M.J., et al., Spatial arrangement of several flagellins within bacterial flagella improves motility in different environments. Nature Communications, 2018. 9(1): p. 5369.
110. Bubendorfer, S., et al., Secondary bacterial flagellar system improves bacterial spreading by increasing the directional persistence of swimming. Proc Natl Acad Sci U S A, 2014. 111(31): p. 11485-90.
111. Kühn, M.J., D.B. Edelmann, and K.M. Thormann, Polar flagellar wrapping and lateral flagella jointly contribute to Shewanella putrefaciens environmental spreading. Environmental Microbiology, 2022. n/a(n/a).
112. Cai, Q., et al., Singly flagellated Pseudomonas aeruginosa chemotaxes efficiently by unbiased motor regulation. mBio, 2016. 7(2): p. e00013-16.
113. Qian, C., et al., Bacterial tethering analysis reveals a "run-reverse-turn" mechanism for Pseudomonas species motility. Appl Environ Microbiol, 2013. 79(15): p. 4734-43.
114. Grognot, M., et al., Vibrio cholerae motility in aquatic and mucus-mimicking environments. Applied and Environmental Microbiology, 2021. 87(20): p. e01293-21.
115. Qu, Z., et al., Changes in the flagellar bundling time account for variations in swimming behavior of flagellated bacteria in viscous media. Proc Natl Acad Sci U S A, 2018. 115(8): p. 1707-1712.
116. Xie, L., C. Lu, and X.-L. Wu, Marine bacterial chemoresponse to a stepwise chemoattractant stimulus. Biophysical journal, 2015. 108(3): p. 766-774.
117. Cohen, E.J., et al., Campylobacter jejuni motility integrates specialized cell shape, flagellar filament, and motor, to coordinate action of its opposed flagella. PLOS Pathogens, 2020. 16(7): p. e1008620.
118. Visick, K.L., E.V. Stabb, and E.G. Ruby, A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat Rev Microbiol, 2021. 19(10): p. 654-665.
119. Nyholm, S.V. and M.J. McFall-Ngai, A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat Rev Microbiol, 2021. 19(10): p. 666-679.
120. Aschtgen, M.S., et al., Insights into flagellar function and mechanism from the squid-vibrio symbiosis. NPJ Biofilms Microbiomes, 2019. 5(1): p. 32.
121. Bäckhed, F., Shining light on microbial signaling to distant organs. Proc Natl Acad Sci U S A, 2019. 116(16): p. 7617-7619.
122. Ruby, E.G., et al., Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci U S A, 2005. 102(8): p. 3004-9.
123. Urbanczyk, H., et al., Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol, 2007. 57(Pt 12): p. 2823-2829.
124. Visick Karen, L. and J. McFall-Ngai Margaret, An exclusive contract: specificity in the Vibrio fischeri-Euprymna scolopes partnership. Journal of Bacteriology, 2000. 182(7): p. 1779-1787.
125. Nawroth, J.C., et al., Motile cilia create fluid-mechanical microhabitats for the active recruitment of the host microbiome. Proc Natl Acad Sci U S A, 2017. 114(36): p. 9510-9516.
126. Gundlach, K.A., et al., Ciliated epithelia are key elements in the recruitment of bacterial partners in the squid-vibrio symbiosis. Front Cell Dev Biol, 2022. 10: p. 974213.
127. Christensen, D.G. and K.L. Visick, Vibrio fischeri: laboratory cultivation, storage, and common phenotypic assays. Curr Protoc Microbiol, 2020. 57(1): p. e103.
128. Macnab, R.M., Examination of bacterial flagellation by dark-field microscopy. Journal of clinical microbiology, 1976. 4(3): p. 258-265.
129. Turner, L., et al., Visualization of flagella during bacterial swarming. J Bacteriol, 2010. 192(13): p. 3259-67.
130. Cambré, A. and A. Aertsen, Bacterial vivisection: how fluorescence-based imaging techniques shed a light on the inner workings of bacteria. Microbiol Mol Biol Rev, 2020. 84(4).
131. Sjoblad, R.D., C.W. Emala, and R.N. Doetsch, Invited review: bacterial flagellar sheaths: structures in search of a function. Cell Motil, 1983. 3(1): p. 93-103.
132. Zhu, S., et al., Molecular architecture of the sheathed polar flagellum in Vibrio alginolyticus. Proceedings of the National Academy of Sciences, 2017. 114(41): p. 10966-10971.
133. Betz, W.J., F. Mao, and G.S. Bewick, Activity-dependent fluorescent staining and destaining of living vertebrate motor nerve terminals. The Journal of Neuroscience, 1992. 12(2): p. 363.
134. Jelínková, A., et al., Probing plant membranes with FM dyes: tracking, dragging or blocking? Plant J, 2010. 61(5): p. 883-92.
135. Wu, Y., et al., Biophysical characterization of styryl dye-membrane interactions. Biophysical journal, 2009. 97(1): p. 101-109.
136. Harris, L.K. and J.A. Theriot, Relative rates of surface and volume synthesis set bacterial cell size. Cell, 2016. 165(6): p. 1479-1492.
137. O′Shea, T.M., et al., Magnesium promotes flagellation of Vibrio fischeri. J Bacteriol, 2005. 187(6): p. 2058-65.
138. O′Shea, T.M., et al., Diguanylate cyclases control magnesium-dependent motility of Vibrio fischeri. Journal of Bacteriology, 2006. 188(23): p. 8196-8205.
139. Acres, J. and J. Nadeau, 2D vs 3D tracking in bacterial motility analysis. AIMS Biophysics, 2021. 8(4): p. 385-399.
140. Lauga, E., et al., Swimming in circles: motion of bacteria near solid boundaries. Biophys J, 2006. 90(2): p. 400-12.
141. DiLuzio, W.R., et al., Escherichia coli swim on the right-hand side. Nature, 2005. 435(7046): p. 1271-4.
142. Goto, T., S. Kudo, and Y. Magariyama. Asymmetric swimming motion of singly flagellated bacteria near a rigid surface. in Bio-mechanisms of Swimming and Flying. 2008. Tokyo: Springer Japan.
143. Magariyama, Y., et al., Difference between forward and backward swimming speeds of the single polar-flagellated bacterium, Vibrio alginolyticus. FEMS Microbiology Letters, 2001. 205(2): p. 343-347.
144. Magariyama, Y., et al., Difference in bacterial motion between forward and backward swimming caused by the wall effect. Biophysical Journal, 2005. 88(5): p. 3648-3658.
145. Wu, K.-T., Y.-T. Hsiao, and W.-Y. Woon, Entrapment of pusher and puller bacteria near a solid surface. Physical Review E, 2018. 98(5): p. 052407.
146. Wang, A., R.F. Garmann, and V.N. Manoharan, Tracking E. coli runs and tumbles with scattering solutions and digital holographic microscopy. Opt Express, 2016. 24(21): p. 23719-23725.
147. Cheong, F.C., et al., Rapid, high-throughput tracking of bacterial motility in 3D via phase-contrast holographic video microscopy. Biophys J, 2015. 108(5): p. 1248-56.
148. Vater, S.M., et al., Swimming behavior of Pseudomonas aeruginosa studied by holographic 3D tracking. PLoS One, 2014. 9(1): p. e87765.
149. Yajima, J., K. Mizutani, and T. Nishizaka, A torque component present in mitotic kinesin Eg5 revealed by three-dimensional tracking. Nature Structural & Molecular Biology, 2008. 15(10): p. 1119-1121.
150. Rieu, M., et al., Parallel, linear, and subnanometric 3D tracking of microparticles with stereo darkfield interferometry. Sci Adv, 2021. 7(6).
151. Darnige, T., et al., Lagrangian 3D tracking of fluorescent microscopic objects in motion. Rev Sci Instrum, 2017. 88(5): p. 055106.
152. Figueroa-Morales, N., et al., 3D spatial exploration by E. coli echoes motor temporal variability. Physical Review X, 2020. 10(2): p. 021004.
153. Hecht, E., Optics 4th edition. Optics 4th edition by Eugene Hecht Reading, 2001.
154. Aleksei, E.B., K.N. Dvoretski, and A.D. Valeri. Refractive index of escherichia coli cells. in Proc.SPIE. 2002.
155. Liu, P.Y., et al., Real-time measurement of single bacterium′s refractive index using optofluidic immersion refractometry. Procedia Engineering, 2014. 87: p. 356-359.
156. Malitson, I.H., Interspecimen comparison of the refractive index of fused silica. Journal of the Optical Society of America, 1965. 55: p. 1205-1209.
157. Theves, M., et al., A bacterial swimmer with two alternating speeds of propagation. Biophys J, 2013. 105(8): p. 1915-24.
158. Sowa, Y., et al., Torque-speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. J Mol Biol, 2003. 327(5): p. 1043-51.
159. Magariyama, Y. and S. Kudo, A mathematical explanation of an increase in bacterial swimming speed with viscosity in linear-polymer solutions. Biophys J, 2002. 83(2): p. 733-9.
160. Lauga, E. and T.R. Powers, The hydrodynamics of swimming microorganisms. Reports on Progress in Physics, 2009. 72(9): p. 096601.
161. Altindal, T., S. Chattopadhyay, and X.-L. Wu, Bacterial chemotaxis in an optical trap. PLOS ONE, 2011. 6(4): p. e18231.
162. Rowe, A.D., et al., Rapid rotation of micron and submicron dielectric particles measured using optical tweezers. Journal of Modern Optics, 2003. 50(10): p. 1539-1554.
163. Hosu, B.G., et al., Synchronized strobed phase contrast and fluorescence microscopy: the interlaced standard reimagined. Optics Express, 2023. 31(4): p. 5167-5180.
164. Alirezaeizanjani, Z., et al., Chemotaxis strategies of bacteria with multiple run modes. Science Advances, 2020. 6(22): p. eaaz6153.
165. Yu, H.S. and M. Alam, An agarose-in-plug bridge method to study chemotaxis in the Archaeon Halobacterium salinarum. FEMS Microbiol Lett, 1997. 156(2): p. 265-9.
166. Sagawa, T., et al., Single-cell E. coli response to an instantaneously applied chemotactic signal. Biophys J, 2014. 107(3): p. 730-739.
167. Brumley, D.R., et al., Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proceedings of the National Academy of Sciences, 2019. 116(22): p. 10792-10797.
168. Sourjik, V. and H.C. Berg, Receptor sensitivity in bacterial chemotaxis. Proceedings of the National Academy of Sciences, 2002. 99(1): p. 123-127.
169. Takekawa, N., et al., HubP, a polar landmark protein, regulates flagellar number by assisting in the proper polar localization of FlhG in Vibrio alginolyticus. J Bacteriol, 2016. 198(22): p. 3091-3098.
指導教授 羅健榮(Chien-Jung Lo) 審核日期 2023-12-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明