博碩士論文 107282002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:18.224.59.231
姓名 謝妮恩(Ni-En Sie)  查詢紙本館藏   畢業系所 物理學系
論文名稱 能量源照射星際冰晶之光脫附作用與光化學反應
(Photodesorption and photochemistry of the interstellar ice under energetic radiation processing)
相關論文
★ A Complete Quantification of Photon-induced Desorption Processes of CO2 Ice★ X射線與電子能量作用下星際冰晶的化學衍化
★ VUV and EUV irradiation of CH4+NH3 ice mixtures★ Wavelength-dependent photodesorption of VUV-inactive molecular ices (N2 Ar, Kr) induced by VUV-excited CO ice
★ Temperature dependent photodesorption of CO ices★ Force between Contacting PDMS Surfaces upon Steady Sliding: Speed Dependence and Fluctuations
★ Diffusion in Realistic-Like Double-Layered Ices★ Chemical evolution of CO:H2S ice mixture under 1 keV electron irradiation
★ 不同電子能量作用下對N2O冰晶的衍化影響★ 一氧化二氮冰晶在真空紫外光照射下其生成溫度對耗散截面的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在太空環境中許多易揮發性分子已被觀測到以固態冰晶形式存在,但是在溫度極低的冷星雲與星系際空間(< 20 K),天文學家卻觀測到易揮發性分子以超乎預期豐富含量的氣態形式存在,這樣的觀測結果與吸積模型的預測大相徑庭,因此天文學家提出非熱效應導致易揮發性分子脫附的可能性。在溫度極低的天文環境中,星際冰晶受到不同能量來源的作用(宇宙射線與能量光子),除了誘發冰晶分子的化學作用外,也能導致冰晶分子的脫附效應。根據天文學家的模擬計算,真空紫外光子誘發冰晶分子脫附的過程,對於星際冰晶是一個相當重要的非熱脫附來源。本論文著重於研究星際冰晶在真空紫外光與X光作用下所引發的光脫附與光化學反應,其中更致力於了解主宰光脫附效率的參數。此外,冰晶分子生長溫度條件對於冰晶的光物理特性也是本論文探討的重點之一。

本論文的研究方式是利用一套低溫超高真空系統模擬天文環境的低溫與低壓。藉由傅立葉轉換紅外光譜儀與四極柱質譜儀監控冰晶分子在能量作用下所產生的化學演化與脫附過程。在冰晶成分上,我們選擇了天文學家相當關注的一氧化碳、二氧化碳、氮與甲烷等分子,以單一分子冰晶或是混和冰晶的方式進行能量作用實驗。在此研究中能量來源分為微波氣體放電管搭配氟化鎂光窗所產生的真空紫外光源(114--170 nm;7.9--10.9 eV)與同步輻射研究中心TLS 08B光束線所提供的X光光源(250--1250 eV)。本論文嘗試改變冰晶分子的生長溫度、生長角度與、混和冰晶比例與光通量等參數,進而討論上述參數對冰晶分子的化學衍化與光脫附效應的影響。

光脫附的研究結果顯示一氧化碳冰晶與二氧化碳冰晶對於生長溫度的反應截然不同。一氧化碳冰晶隨著生長溫度越高其光脫率值越低,尤其是在臨界相變溫度的區域會有更加顯著的冰晶結構影響光脫附率。二氧化碳冰晶的光脫附率不論是在勻相結構或是晶質結構下,幾乎沒有差異。不論是溫度對於一氧化碳冰晶的光脫附影響,或是二氧化碳冰晶光脫附率與文獻的差異,皆能在考慮冰晶分子的真空紫外光吸收截面與光源能量譜分布的影響下獲得完美的詮釋。此外,在一氧化碳與氮分子及二氧化碳的混和冰晶,實驗結果證實冰晶中的能量傳遞是經由間接電子躍遷造成冰晶分子的脫附現象。

在能量光子照射冰晶的研究中,根據不同成分的冰晶樣本與能量源可以從紅外光譜上偵測到各式各樣的光化產物,其中質量較大的複雜有機分子能同時經由紅外光譜與質譜來標定分子的種類。除了照光過程外,一些大質量的分子也能在回溫過程中被偵測到,而這些複雜有機分子增添了天文環境中化學衍化的多樣性。冰晶的紅外光譜對於天文觀測中的分子標定是不可或缺的,也能提供星際冰晶生成溫度歷史的參考。本論文所設計的研究實驗,是追求對於天文物理與天文化學能有更完整的認知。
摘要(英) Numerous solid molecules have been observed in various interstellar regions, and the abundant gaseous molecules are also detected in some environments with low temperatures beyond expectation, like the interstellar medium (ISM) and cold dense clouds. The radiation of the energetic cosmic rays, VUV photons, electrons, and X-rays impinge on the dust grains, resulting in the desorption of the ice mantles. The non-thermal photodesorption process has been seen as an indispensable origin of the overabundance of molecules in the gas phase in the cold regions.

Hence, energetic radiation experiments are of significance for studying the details of photodesorption and photochemical processes. The VUV and X-ray photo-processing on the pure and ice mixtures are focused to figure out the governing parameters on the photodesorption yield, as well as the photochemistry happening simultaneously during irradiation. The fundamental physical properties of the ice are involved in the discussion.

The experiments are conducted through the ultra-high vacuum (UHV) chamber, equipped with a closed-cycle helium cryostat to mimic the low pressure and low temperature near the cold dense clouds and the interstellar medium. The evolution of the solid ice is observed by a transmission Fourier transform infrared spectrometer (FTIR), while a quadrupole mass spectrometer (QMS) is used to detect the gaseous desorbing signals. Different kinds of ice samples are selected to be the sample, such as pure CO2, CO, CH4, the mixtures with N2, and the H2O:CO:NH3. The samples are irradiated by the VUV photons, generated by the Microwave-Discharge Hydrogen-flow Lamp (MDHL) produced in the laboratory with the wavelength 110--180 nm. The other energetic source performed in this thesis is the X-ray, provided by the National Synchrotron Radiation Research Center (NSRRC) with the energy 250 to 1250 eV. Various parameters are designed to investigate the photon-induced desorption and chemical reactions, including the different deposition temperatures, deposition angles, ice mixing ratios, and photon fluxes.

The parameters affecting photodesorption are revealed in detail. In the case of deposition temperature issue on the pure CO2 and CO ice, only the latter one shows the temperature dependency, and the desorption factors are developed for determining the photodesorption yields. Another important role is the absorption cross section of the solid ice, which should be considered when we discuss photodesorption. Moreover, we found that the angle between gas inlet and the substrate falls at 70$degree$ can create a maximum photodesorption yield of CO ice, along with a columnar structure of ice. The energy transfer between CO2/CO ice with N2 is discussed, confirming that the indirect desorption induced by electronic transition (DIET) dominates the photodesorption processes. During irradiation, the solid products are observed on the IR spectra according to the ice samples and the radiation sources. There are Complex Organic Molecules (COMs) identified by both the IR spectra and the mass spectra, and the chemical formation routes of these molecules are represented. Some larger molecules are detected during the temperature-programmed desorption (TPD) processes, supporting the molecular diversity in the interstellar regions. The infrared spectra of the ice at different temperature environments are required not only to identify the peak position of the molecules but also to provide information to track the temperature history of the ice mantles on the dust grains. With the experiments performed in this thesis, we hope to contribute to a more complete knowledge of astrophysics and astrochemistry.
關鍵字(中) ★ 光脫附
★ 光化學反應
★ 真空紫外光
★ X光
★ 星際冰晶
關鍵字(英) ★ Photodesorption
★ Photochemistry
★ VUV
★ X-ray
★ Interstellar ice
論文目次 摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Interstellar environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Interstellar molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Solid ice abundances . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Gas phase molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Complex organic molecules . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Energetic sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Photodesorption process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Experimental procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Detection system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Infrared spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Mass spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Energetic sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Vacuum ultraviolet (VUV) . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 X-ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
I Photodesorption 21
3 On the Photodesorption of CO2 Ice Analogs: The Formation of Atomic C in the
Ice and the Effect of the VUV Emission Spectrum . . . . . . . . . . . . . . . . . . . 24
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Quantitative calibration of mass spectrometer . . . . . . . . . . . . . . 27
3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 VUV irradiation for CO2 ice . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 The discrepancy in the CO2 photodesorption yield measured by infrared
spectrometer and mass spectrometer . . . . . . . . . . . . . . . . . . . 33
3.3.3 Photodesorption yield . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Conclusions and Astrophysical implications . . . . . . . . . . . . . . . . . . . 41
4 Key parameters controlling the photodesorption yield in interstellar CO ice analogs:
The Influence of ice deposition temperature and thickness . . . . . . . . . . . . . . . 46
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Experiment Setup and Procedures . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 Thickness effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.2 Temperature effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.3 Photodesorption estimation . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.4 Dominating parameters for photodesorption . . . . . . . . . . . . . . . 56
4.4 Astrophysical Implications and Conclusions . . . . . . . . . . . . . . . . . . . 58
5 Accretion and photodesorption of CO ice as a function of the incident angle of
deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 Astrophysical Implications and Conclusions . . . . . . . . . . . . . . . . . . . 70
6 13CO and 13CO2 ice mixtures with N2 in photon energy transfer studies . . . . . 77
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.1 13CO:N2 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.2 13CO2:N2 ice mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.3 Comparison between 13CO:N2 and 13CO2:N2 mixtures . . . . . . . . . 93
6.4 Astrophysical Implications and Conclusions . . . . . . . . . . . . . . . . . . . 95
7 X-Ray Photo-desorption of H2O:CO:NH3 Circumstellar Ice Analogs: Gas-phase
Enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.3 Photo-desorbing Fragments Induced by X-Rays . . . . . . . . . . . . . . . . . 103
7.4 Photo-desorption Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
II Photochemistry 120
8 Formation Mechanism of CO2 in VUV-Irradiated CO Ice . . . . . . . . . . . . . 122
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.2 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.3.1 Formation of C16O18O . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.3.2 Formation of C18O2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.3.3 Effect of deposition rate . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9 Synthesis of Complex Organic Molecules in Soft X-Ray Irradiated Ices . . . . . . 133
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.3.1 Irradiation and Products . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.3.2 Warm Up: Infrared and Mass Spectra . . . . . . . . . . . . . . . . . . 144
9.3.3 The Refractory Residue . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.4 Conclusions and Astrophysical Implications . . . . . . . . . . . . . . . . . . . 154
III Temperature effect on infrared structural changes 158
10 Pure CO2 ice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
10.2 Experimental set-up and procedures . . . . . . . . . . . . . . . . . . . . . . . 163
10.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.3.1 Different deposition temperatures . . . . . . . . . . . . . . . . . . . . 163
10.3.2 During cooling and TPD process . . . . . . . . . . . . . . . . . . . . . 166
10.3.3 Molecular dynamics (MD) simulations . . . . . . . . . . . . . . . . . 167
10.3.4 Deconvolution of IR features . . . . . . . . . . . . . . . . . . . . . . . 168
10.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
11 Pure CH4 ice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
11.2 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
11.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
11.3.1 Different deposition temperatures . . . . . . . . . . . . . . . . . . . . 176
11.3.2 During cooling and TPD processes . . . . . . . . . . . . . . . . . . . . 178
11.3.3 Effect of the deposition rate . . . . . . . . . . . . . . . . . . . . . . . 179
11.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
IV Conclusions 181
12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
12.1 I. Photodesorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
12.1.1 Deposition temperature effect . . . . . . . . . . . . . . . . . . . . . . 182
12.1.2 Parameters influencing the photodesorption yield . . . . . . . . . . . . 183
12.1.3 Photodesorption yield of CO ice . . . . . . . . . . . . . . . . . . . . . 187
12.1.4 Energy transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
12.1.5 X-ray induced photodesorption . . . . . . . . . . . . . . . . . . . . . . 189
12.2 II. Photochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
12.2.1 VUV — Pure CO2, ice mixture 13CO2:N2 . . . . . . . . . . . . . . . . 190
12.2.2 VUV — Pure CO/C18O, ice mixture 13CO:N2 . . . . . . . . . . . . . . 190
12.2.3 X-ray — Ice mixture H2O:CO:NH3 . . . . . . . . . . . . . . . . . . . 191
12.3 III. Temperature effect on infrared structural changes . . . . . . . . . . . . . . 191
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
參考文獻 Ageev, V. 1994, Desorption induced by electronic transitions, Progress in surface science, 47, 55
Aikawa, Y., Wakelam, V., Garrod, R. T., & Herbst, E. 2008, Molecular evolution and star formation: from prestellar cores to protostellar cores, The Astrophysical Journal, 674, 984
Aikawa, Y., Kamuro, D., Sakon, I., et al. 2012, AKARI observations of ice absorption bands towards edge-on young stellar objects, Astronomy & Astrophysics, 538, A57
Almeida, G., Pilling, S., de Barros, A., et al. 2017, Processing of N2O ice by fast ions: implications on nitrogen chemistry in cold astrophysical environments, Monthly Notices of the Royal Astronomical Society, 471, 1330
Alsindi, W., Gardner, D., van Dishoeck, E., & Fraser, H. 2003, Formation of a CO–CH4 complex in thin solid films below 50 K, Chemical physics letters, 378, 178
Altwegg, K., Balsiger, H., Bar-Nun, A., et al. 2016, Prebiotic chemicals–amino acid and phosphorus–in the coma of comet 67P/ Churyumov-Gerasimenko, Science advances, 2, e1600285
Alvarez, R., Lopez-Santos, C., Parra-Barranco, J., et al. 2014, Nanocolumnar growth of thin films deposited at oblique angles: Beyond the tangent rule, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 32, 041802
Andrade, D., Rocco, M., & Boechat-Roberty, H. 2010, X-ray photodesorption from methanol ice, Monthly Notices of the Royal Astronomical Society, 409, 1289
Avouris, P., & Walkup, R. E. 1989, Fundamental mechanisms of desorption and fragmentation induced by electronic transitions at surfaces, Annual Review of Physical Chemistry, 40, 173
Bahr, D., & Baragiola, R. 2012, Photodesorption of solid CO2 by Lyα, The Astrophysical Journal, 761, 36
Barranco, Á. Q., Borrás Martos, A. I., Rodríguez González-Elipe, A., & Palmero Acebedo, A. 2016, Perspectives on oblique angle deposition of thin films: From fundamentals to devices, Progress in Materials Science, 76, 59-152.
Benndorf, M., Westerveld, W., Van Eck, J., Van der Weg, J., & Heideman, H. 1999, Electron-ion coincidence measurements on CO after C 1s and O 1s photoabsorption, Journal of Physics B: Atomic, Molecular and Optical Physics, 32, 2503
Bennett, C. J., Jamieson, C. S., & Kaiser, R. I. 2009, An experimental investigation of the decomposition of carbon monoxide and formation routes to carbon dioxide in interstellar ices, The Astrophysical Journal Supplement Series, 182, 1
Benson, P., & Myers, P. 1989, A survey for dense cores in dark clouds, the Astrophysical Journal Supplement Series, 71, 89
Bergeld, J., & Chakarov, D. 2006, Photo ejection of water molecules from amorphous ice films, The Journal of chemical physics, 125, 141103
Bergin, E. A., Alves, J., Huard, T., & Lada, C. J. 2002, N2H+ and C18O depletion in a cold dark cloud, The Astrophysical Journal, 570, L101
Bergin, E. A., Ciardi, D. R., Lada, C. J., Alves, J., & Lada, E. A. 2001, Molecular excitation and differential gas-phase depletions in the IC 5146 dark cloud, The Astrophysical Journal, 557, 209
Bernstein, M. P., Dworkin, J. P., Sandford, S. A., Cooper, G. W., & Allamandola, L. J. 2002, Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues, Nature, 416, 401
Bernstein, M. P., Sandford, S. A., Allamandola, L. J., Chang, S., & Scharberg, M. A. 1995, Organic compounds produced by photolysis of realistic interstellar and cometary ice analogs containing methanol, The Astrophysical Journal, 454, 327
Bertin, M., Fayolle, E. C., Romanzin, C., et al. 2012, UV photodesorption of interstellar CO ice analogues: from subsurface excitation to surface desorption, Physical Chemistry Chemical Physics, 14, 9929
Bertin, M., Fayolle, E. C., Romanzi, C., et al. 2013, Indirect Ultraviolet Photodesorption From CO:N2 Binary Ices–an Efficient Grain-gas Process, The Astrophysical Journal, 779, 120
Bianchi, E., Codella, C., Ceccarelli, C., et al. 2019, The census of interstellar complex organic molecules in the Class I hot corino of SVS13-A, Monthly Notices of the Royal Astronomical Society, 483, 1850
Bisschop, S., Fuchs, G., van Dishoeck, E., & Linnartz, H. 2007, H-atom bombardment of CO2, HCOOH, and CH3CHO containing ices, Astronomy & Astrophysics, 474, 1061
Bockelée-Morvan, D., Calmonte, U., Charnley, S., et al. 2015, Cometary isotopic measurements, Space science reviews, 197, 47
Bonn, M., Funk, S., Hess, C., et al. 1999, Phonon-versus electron-mediated desorption and oxidation of CO on Ru (0001), Science, 285, 1042
Boogert, A., Schutte, W., Tielens, A., et al. 1996, Solid methane toward deeply embedded protostars., Astronomy and Astrophysics, 315, L377
Boogert, A., Ehrenfreund, P., Gerakines, P., et al. 2000, ISO-SWS observations of interstellar solid 13CO2: heated ice and the Galactic 12C/13C abundance ratio, Astronomy and Astrophysics, 353, 349
Boogert, A., Huard, T., Cook, A., et al. 2011, Ice and dust in the quiescent medium of isolated dense cores, The Astrophysical Journal, 729, 92
Boogert, A. A., Gerakines, P. A., & Whittet, D. C. 2015, Observations of the icy universe, Annual Review of Astronomy and Astrophysics, 53, 541
Bossa, J.-B., Isokoski, K., De Valois, M., & Linnartz, H. 2012, Thermal collapse of porous interstellar ice, Astronomy & Astrophysics, 545, A82
Bossa, J.-B., Maté, B., Fransen, C., et al. 2015, Porosity and band-strength measurements of multi-phase composite ices, The Astrophysical Journal, 814, 47
Bottinelli, S., Wakelam, V., Caux, E., et al. 2014, CH in absorption in IRAS 16293- 2422, Monthly Notices of the Royal Astronomical Society, 441, 1964
Bouilloud, M., Fray, N., Bénilan, Y., et al. 2015, Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO, Monthly Notices of the Royal Astronomical Society, 451, 2145
Brown, P., Charnley, S., & Millar, T. 1988, A model of the chemistry in hot molecular cores, Monthly Notices of the Royal Astronomical Society, 231, 409
Brucato, J. R., Baratta, G. A., & Strazzulla, G. 2006, An infrared study of pure and ion irradiated frozen formamide, Astronomy & Astrophysics, 455, 395
Carrascosa, H., Cruz-Díaz, G., Muñoz Caro, G. M., Dartois, E., & Chen, Y. 2020, Photoninduced desorption of larger species in UV-irradiated methane ice, Monthly Notices of the Royal Astronomical Society, 493, 821
Carrascosa, H., Muñoz Caro, G. M., González-díaz, C., Suevos, J., & Chen, Y.-J. 2021, The Intriguing Behavior of Ultraviolet Photodesorption and Color Temperature of Astrophysical CO Ice Analogs: A Possible Indication of Molecular Disorder, The Astrophysical Journal, 916, 1
Cazaux, S., Carrascosa, H., Muñoz Caro, G. M., et al. 2022, Photoprocessing of H2S on dust grains: Building S chains in translucent clouds and comets, Astronomy & Astrophysics, 657, A100
Cazaux, S., Martín-Doménech, R., Chen, Y., Muñoz Caro, G. M., & Díaz, C. G. 2017, CO depletion: a microscopic perspective, The Astrophysical Journal, 849, 80
Cecchi-Pestellini, C., & Aiello, S. 1992, Cosmic ray induced photons in dense interstellar clouds, Monthly Notices of the Royal Astronomical Society, 258, 125
Cernicharo, J., Kisiel, Z., Tercero, B., et al. 2016, A rigorous detection of interstellar CH3NCO: An important missing species in astrochemical networks, Astronomy & Astrophysics, 587, L4
Chen, H.-F., Liu, M.-C., Chen, S.-C., Huang, T.-P., & Wu, Y.-J. 2015, Irradiation of ethylene diluted in solid nitrogen with vacuum ultraviolet light and electrons: Its implications for the formation of HCN and HNC, The Astrophysical Journal, 804, 36
Chen, Y.-J., Chuang, K.-J., Muñoz Caro, G. M., et al. 2014, Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: application to photodesorption of CO ice, The Astrophysical Journal, 781, 15
Chen, Y.-J., Ciaravella, A., Muñoz Caro, G. M., et al. 2013, Soft X-ray irradiation of methanol ice: Formation of products as a function of photon energy, The Astrophysical Journal, 778, 162
Chen, Y.-J., Nuevo, M., Chu, C.-C., et al. 2011, Photo-desorbed species produced by the UV/ EUV irradiation of an H2O:CO2NH3 ice mixture, Advances in Space Research, 47, 1633
Chen, Y.-J., Nuevo, M., Hsieh, J.-M., et al. 2007, Carbamic acid produced by the UV/EUV irradiation of interstellar ice analogs, Astronomy & Astrophysics, 464, 253
Chen, Y.-J., Muñoz Caro, G. M., Aparicio, S., et al. 2017, Wannier-Mott Excitons in Nanoscale Molecular Ices, Physical review letters, 119, 157703
Chiar, J., Adamson, A., Kerr, T., & Whittet, D. 1995, High-resolution studies of solid CO in the taurus dark cloud: Characterizing the ices in quiescent clouds, The Astrophysical Journal, 455, 234
Ciaravella, A., Chen, Y.-J., Cecchi-Pestellini, C., et al. 2016, Chemical evolution of a CO ice induced by soft X-rays, The Astrophysical Journal, 819, 38
Ciaravella, A., Jiménez-Escobar, A., Cecchi-Pestellini, C., et al. 2019, Synthesis of complex organic molecules in soft X-ray irradiated ices, The Astrophysical Journal, 879, 21
Ciaravella, A., Jiménez-Escobar, A., Muñoz Caro, G. M., et al. 2012, Soft X-ray irradiation of pure carbon monoxide interstellar ice analogues, The Astrophysical Journal Letters, 746, L1
Ciaravella, A., Muñoz Caro, G. M., Escobar, A. J., et al. 2010, Soft X-ray Irradiation of Methanol Ice: Implication for H2CO Formation in Interstellar Regions, The Astrophysical Journal Letters, 722, L45
Ciaravella, A., Muñoz Caro, G. M., Jiménez-Escobar, A., et al. 2020, X-ray processing of a realistic ice mantle can explain the gas abundances in protoplanetary disks, Proceedings of the National Academy of Sciences, 117, 16149
Clusius, K. 1929, Über die spezifische Wärme einiger kondensierter Gase zwischen 10 abs. und ihrem Tripelpunkt, Zeitschrift für physikalische Chemie, 3, 41
Collings, M. P., Anderson, M. A., Chen, R., et al. 2004, A laboratory survey of the thermal desorption of astrophysically relevant molecules, Monthly Notices of the Royal Astronomical Society, 354, 1133
Cooke, I. R., Fayolle, E. C., & Öberg, K. I. 2016, CO2 Infrared Phonon Modes in Interstellar Ice Mixtures, The Astrophysical Journal, 832, 5
Cooke, I. R., Öberg, K. I., Fayolle, E. C., Peeler, Z., & Bergner, J. B. 2018, CO Diffusion and Desorption Kinetics in CO2 Ices, The Astrophysical Journal, 852, 75
Cooke, I. R., & Sims, I. R. 2019, Experimental studies of gas-phase reactivity in relation to complex organic molecules in star-forming regions, ACS Earth and Space Chemistry, 3, 1109
Cottin, H., Moore, M. H., & Bénilan, Y. 2003, Photodestruction of relevant interstellar molecules in ice mixtures, The Astrophysical Journal, 590, 874
Cruz-Diaz, G., Muñoz Caro, G. M., Chen, Y.-J., & Yih, T.-S. 2014a, Vacuum-UV spectroscopy of interstellar ice analogs-I. Absorption cross-sections of polar-ice molecules, Astronomy & Astrophysics, 562, A119
Cruz-Diaz, G., Muñoz Caro, G. M., Chen, Y.-J., & Yih, T.-S. 2014b, Vacuum-UV spectroscopy of interstellar ice analogs-II. Absorption cross-sections of nonpolar ice molecules, Astronomy & Astrophysics, 562, A120
Cruz-Diaz, G. A., Martín-Doménech, R., Moreno, E., Muñoz Caro, G. M., & Chen, Y.-J. 2018, New measurements on water ice photodesorption and product formation under ultraviolet irradiation, Monthly Notices of the Royal Astronomical Society, 474, 3080
Cruz-Diaz, G. A., Martín-Doménech, R., Muñoz Caro, G. M., & Chen, Y.-J. 2016, Negligible photodesorption of methanol ice and active photon-induced desorption of its irradiation products, Astronomy & Astrophysics, 592, A68
Dartois, E. 2005, The ice survey opportunity of ISO, ISO Science Legacy, 293
Dartois, E., Chabot, M., Barkach, I., et al. 2021, Cosmic ray sputtering yield of interstellar ice mantles-CO and CO2 ice thickness dependence, Astronomy & Astrophysics, 647, A177
Dartois, E., Chabot, M., Barkach, T. I., et al. 2018, Cosmic ray sputtering yield of interstellar H2O ice mantles-Ice mantle thickness dependence, Astronomy & Astrophysics, 618, A173
Dartois, E., Dutrey, A., & Guilloteau, S. 2003, Structure of the DM Tau Outer Disk: Probing the vertical kinetic temperature gradient, Astronomy & Astrophysics, 399, 773
Dartois, E., Augé, B., Boduch, P., et al. 2015, Heavy ion irradiation of crystalline water iceCosmic ray amorphisation cross-section and sputtering yield, Astronomy & Astrophysics, 576, A125
Darwent, B. d. 1970, Bond dissociation energies in simple molecules, Tech. rep., National Standard Reference Data System
de Graauw, T., Whittet, D., Gerakines, P. a., et al. 1996, SWS observations of solid CO2 in molecular clouds., Astronomy and astrophysics, 315, L345
de Marcellus, P., Meinert, C., Nuevo, M., et al. 2011, Non-racemic amino acid production by ultraviolet irradiation of achiral interstellar ice analogs with circularly polarized light, The Astrophysical journal letters, 727, L27
Demyk, K., Dartois, E., d’Hendecourt, L., et al. 1998, Laboratory identification of the 4.62 muM solid state absorption band in the ISO-SWS spectrum of RAFGL 7009S, Astronomy and Astrophysics, 339, 553
d’Hendecourt, L., Allamandola, L., Baas, F., & Greenberg, J. 1982, Interstellar grain explosions-Molecule cycling between gas and dust, Astronomy and Astrophysics, 109, L12
d’Hendecourt, L., Jourdain de Muizon, M., et al. 1989, The discovery of interstellar carbon dioxide, Astronomy and Astrophysics, 223, L5
Dohnálek, Z., Kimmel, G. A., Ayotte, P., Smith, R. S., & Kay, B. D. 2003, The deposition angle-dependent density of amorphous solid water films, The Journal of chemical physics, 118, 364
Dominik, C., Ceccarelli, C., Hollenbach, D., & Kaufman, M. 2005, Gas-phase water in the surface layer of protoplanetary disks, The Astrophysical Journal Letters, 635, L85
Dunham, M. M., Evans, N. J., Terebey, S., Dullemond, C. P., & Young, C. H. 2010, Evolutionary signatures in the formation of low-mass protostars. II. Toward reconciling models and observations, The Astrophysical Journal, 710, 470
Dupuy, R., Bertin, M., Féraud, G., et al. 2017, Spectrally-resolved UV photodesorption of CH4 in pure and layered ices, Astronomy & Astrophysics, 603, A61
Dupuy, R., Bertin, M., Férau, G., et al. 2018, X-ray photodesorption from water ice in protoplanetary disks and X-ray-dominated regions, Nature Astronomy, 2, 796
Dupuy, R., Bertin, M., Feraud, G., et al. 2021, X-ray induced desorption and photochemistry in CO ice, Physical Chemistry Chemical Physics
Edridge, J. L., Freimann, K., Burke, D. J., & Brown, W. A. 2013, Surface science investigations of the role of CO2 in astrophysical ices, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371, 20110578
Ehrenfreund, P., Boogert, A., Gerakines, P., et al. 1996, A laboratory database of solid CO and CO2 for ISO, Astron. Ap., 315, L341
Ehrenfreund, P., Boogert, A., Gerakines, P., Tielens, A., & van Dishoeck, E. 1997, Infrared spectroscopy of interstellar apolar ice analogs, Astron. Astrophys, 328, 649
Elsila, J., Allamandola, L. J., & Sandford, S. A. 1997, The 2140 cm-1 (4.673 microns) solid CO band: the case for interstellar O2 and N2 and the photochemistry of nonpolar interstellar ice analogs, The Astrophysical Journal, 479, 818
Emtiaz, S. M., Toriello, F., H, J., & Vidali, G. 2022, Infrared Spectroscopic Study of Methane Ice, Pure and in Mixtures with Polar (H2O) and Nonpolar (N2) Molecules, The Journal of Physical Chemistry A
Emtiaz, S. M., Toriello, F., He, J., & Vidali, G. 2019, Infrared spectroscopic study of solid methane: Nuclear spin conversion of stable and metastable phases, The Journal of Physical Chemistry A, 124, 552
Escribano, R. M., Muñoz Caro, G. M., Cruz-Diaz, G. A., Rodríguez-Lazcano, Y., & Maté, B. 2013, Crystallization of CO2 ice and the absence of amorphous CO2 ice in space, Proceedings of the National Academy of Sciences, 110, 12899
Falk, M. 1987, Amorphous solid carbon dioxide, The Journal of chemical physics, 86, 560
Fayolle, E. C., Balfe, J., Loomis, R., et al. 2016, N2 and CO desorption energies from water ice, The Astrophysical Journal Letters, 816, L28
Fayolle, E. C., Bertin, M., Romanzin, C., et al. 2011, CO ice photodesorption: a wavelengthdependent study, The Astrophysical Journal Letters, 739, L36
Fayolle, E. C., Bertin, M., Romanzi, C., et al. 2013, Wavelength-dependent UV photodesorption of pure N2 and O2 ices, Astronomy & Astrophysics, 556, A122
Fillion, J.-H., Fayolle, E. C., Michaut, X., et al. 2014, Wavelength resolved UV photodesorption and photochemistry of CO2 ice, Faraday Discussions, 168, 533
Fillion, J.-H., Dupuy, R., Féraud, G., et al. 2022, Vacuum-UV Photodesorption from Compact Amorphous Solid Water: Photon Energy Dependence, Isotopic and Temperature Effects, ACS Earth and Space Chemistry, 6, 100
Flaherty, D. W., Hahn, N. T., May, R. A., et al. 2012, Reactive ballistic deposition of nanostructured model materials for electrochemical energy conversion and storage, Accounts of chemical research, 45, 434
Förstel, M., Maksyutenko, P., Jones, B. M., et al. 2016, On the formation of amide polymers via carbonyl–amino group linkages in energetically processed ices of astrophysical relevance, The Astrophysical Journal, 820, 117
Fulvio, D., Sivaraman, B., Baratta, G., Palumbo, M., & Mason, N. 2009, Novel measurements of refractive index, density and mid-infrared integrated band strengths for solid O2, N2O and NO2:N2O4 mixtures, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72, 1007
Funk, S., Bonn, M., Denzler, D. N., et al. 2000, Desorption of CO from Ru (001) induced by near-infrared femtosecond laser pulses, The Journal of Chemical Physics, 112, 9888
Garrod, R., Wakelam, V., & Herbst, E. 2007, Non-thermal desorption from interstellar dust grains via exothermic surface reactions, Astronomy & Astrophysics, 467, 1103
Gerakines, P., & Hudson, R. L. 2015a, First infrared band strengths for amorphous CO2, an overlooked component of interstellar ices, The Astrophysical Journal Letters, 808, L40
Gerakines, P., & Moore, M. 2001, Carbon suboxide in astrophysical ice analogs, Icarus, 154, 372
Gerakines, P., Moore, M., & Hudson, R. 2004, Ultraviolet photolysis and proton irradiation of astrophysical ice analogs containing hydrogen cyanide, Icarus, 170, 202
Gerakines, P., Schutte, W., & Ehrenfreund, P. 1996, Ultraviolet processing of interstellar ice analogs. I. Pure ices., Astronomy and Astrophysics, 312, 289
Gerakines, P., Schutte, W., Greenberg, J., & van Dishoeck, E. 1995, The infrared band strengths of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures., Astronomy and Astrophysics, 296, 810
Gerakines, P., Whittet, D., Ehrenfreund, P., et al. 1999, Observations of solid carbon dioxide in molecular clouds with the infrared space observatory, The Astrophysical Journal, 522, 357
Gerakines, P. A., Bray, J., Davis, A., & Richey, C. 2005, The strengths of near-infrared absorption features relevant to interstellar and planetary ices, The Astrophysical Journal, 620, 1140
Gerakines, P. A., & Hudson, R. L. 2015b, Infrared spectra and optical constants of elusive amorphous methane, The Astrophysical Journal Letters, 805, L20
Gibb, E., Whittet, D., Boogert, A., & Tielens, A. 2004, Interstellar ice: the infrared space observatory legacy, The astrophysical journal supplement series, 151, 35
Goesmann, F., Rosenbauer, H., Bredehöft, J. H., et al. 2015, Organic compounds on comet 67P/ Churyumov-Gerasimenko revealed by COSAC mass spectrometry, Science, 349, aab0689
Gomez-Zavaglia, A., & Fausto, R. 2003, Low-temperature solid-state FTIR study of glycine, sarcosine and N, N-dimethylglycine: observation of neutral forms of simple α-amino acids in the solid state, Physical Chemistry Chemical Physics, 5, 3154
González Díaz, C., Carrascosa de Lucas, H., Aparicio, S., et al. 2019, Accretion and photodesorption of CO ice as a function of the incident angle of deposition, Monthly Notices of the Royal Astronomical Society, 486, 5519
Gredel, R., Lepp, S., Dalgarno, A., & Herbst, E. 1989, Cosmic-ray-induced photodissociation and photoionization rates of interstellar molecules, The Astrophysical Journal, 347, 289
Groth, W., Pessara, W., & Rommel, H. 1962, Photochemische Untersuchungen im SCHUMANN-Ultraviolett Nr. 11 Die photochemische Zersetzung von N2 und CO im Lichte der Xenonund Krypton-Resonanzwellenlängen1, 2, 3, Zeitschrift für Physikalische Chemie, 32, 192
Grundy, W., Young, L., Stansberry, J., et al. 2010, Near-infrared spectral monitoring of Triton with IRTF/SpeX II: Spatial distribution and evolution of ices, Icarus, 205, 594
Hagen, W., Allamandola, L., & Greenberg, J. 1979, Interstellar molecule formation in grain mantles: The laboratory analog experiments, results and implications, Astrophysics and Space Science, 65, 215
Halfen, D., Apponi, A., & Ziurys, L. M. 2001, Evaluating the N/O chemical network: The distribution of N2O and NO in the Sagittarius B2 complex, The Astrophysical Journal, 561, 244
Hasegawa, T. I., Herbst, E., & Leung, C. M. 1992, Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules, The Astrophysical Journal Supplement Series, 82, 167
Hassel, G. E., Herbst, E., & Garrod, R. T. 2008, Modeling the Lukewarm Corino Phase: Is L1527 Unique?, The Astrophysical Journal, 681, 1385
Henke, B. L., Gullikson, E. M., & Davis, J. C. 1993, X-ray interactions: photoabsorption, scattering, transmission, and reflection at E= 50-30,000 eV, Z= 1-92, Atomic data and nuclear data tables, 54, 181
Herbst, E., & van Dishoeck, E. F. 2009, Complex organic interstellar molecules, Annual Review of Astronomy and Astrophysics, 47, 427
Hinkle, K. W., Keady, J. J., & Bernath, P. F. 1988, Detection of C3 in the circumstellar shell of IRC+ 10216, Science, 241, 1319
Holtom, P. D., Bennett, C. J., Osamura, Y., Mason, N. J., & Kaiser, R. I. 2005, A combined experimental and theoretical study on the formation of the amino acid glycine (NH2CH2COOH) and its isomer (CH3NHCOOH) in extraterrestrial ices, The Astrophysical Journal, 626, 940
Huang, C., Cecchi-Pestellini, C., Ciaravella, A., et al. 2022, Chemical and physical processes caused by electrons impacting on H2O–CO mixed ices, Monthly Notices of the Royal Astronomical Society, 517, 3078
Huang, C.-H., Ciaravella, A., Cecchi-Pestellini, C., et al. 2020, Effects of 150–1000 eV Electron Impacts on Pure Carbon Monoxide Ices Using the Interstellar Energetic-Process System (IEPS), The Astrophysical Journal, 889, 57
Hudgins, D., Sandford, S., Allamandola, L., & Tielens, A. 1993, Mid-and far-infrared spectroscopy of ices-Optical constants and integrated absorbances, The Astrophysical Journal Supplement Series, 86, 713
Hudson, R., & Moore, M. 2000, New experiments and interpretations concerning the “XCN” band in interstellar ice analogues, Astronomy and Astrophysics, 357, 787
Huebner, W. F., Keady, J. J., & Lyon, S. 1992, in Solar photo rates for planetary atmospheres and atmospheric pollutants (Springer), 1–289
Islam, F., Baratta, G., & Palumbo, M. 2014, Simultaneous UV-and ion processing of astrophysically relevant ices-The case of CH3OH:N2 solid mixtures, Astronomy & Astrophysics, 561, A73
Isokoski, K., Poteet, C., & Linnartz, H. 2013, Highly resolved infrared spectra of pure CO2 ice (15–75 K), Astronomy & Astrophysics, 555, A85
Jamieson, C. S., Bennett, C. J., Mebel, A. M., & Kaiser, R. I. 2005, Investigating the mechanism for the formation of nitrous oxide [N2O (X1+)] in extraterrestrial ices, The Astrophysical Journal, 624, 436
Jamieson, C. S., Mebel, A. M., & Kaiser, R. I. 2006, Understanding the kinetics and dynamics of radiation-induced reaction pathways in carbon monoxide ice at 10 K, The Astrophysical Journal Supplement Series, 163, 184
Jiang, G. J., Person, W. B., & Brown, K. G. 1975, Absolute infrared intensities and band shapes in pure solid CO and CO in some solid matrices, The Journal of Chemical Physics, 62, 1201
Jiménez-Escobar, A., Chen, Y.-J., Ciaravella, A., et al. 2016, X-ray irradiation of H2O+CO ice mixtures with synchrotron light, The Astrophysical Journal, 820, 25
Jiménez-Escobar, A., Ciaravella, A., Cecchi-Pestellin, C., et al. 2022, X-Ray-induced Diffusion and Mixing in Layered Astrophysical Ices, The Astrophysical Journal, 926, 176
Jiménez-Escobar, A., Ciaravella, A., Cecchi-Pestellini, C., et al. 2018, X-Ray Photo-desorption of H2O:CO:NH3 Circumstellar Ice Analogs: Gas-phase Enrichment, The Astrophysical Journal, 868, 73
Jiménez-Escobar, A., Giuliano, B., Muñoz Caro, G. M., Cernicharo, J., & Marcelino, N. 2014, Investigation of HNCO isomer formation in ice mantles by UV and thermal processing: An experimental approach, The Astrophysical Journal, 788, 19
Jiménez-Escobar, A., Muñoz Caro, G. M., Ciaravella, A., et al. 2012, Soft X-Ray irradiation of H2S ice and the presence of S2 in comets, The Astrophysical Journal Letters, 751, L40
Jones, B. M., Bennett, C. J., & Kaiser, R. I. 2011, Mechanistical studies on the production of formamide (H2NCHO) within interstellar ice analogs, The Astrophysical Journal, 734, 78
Jones, B. M., Kaiser, R. I., & Strazzulla, G. 2014, Uv-vis, infrared, and mass spectroscopy of electron irradiated frozen oxygen and carbon dioxide mixtures with water, The Astrophysical Journal, 781, 85
Kaňuchová, Z., Urso, R., Baratta, G., et al. 2016, Synthesis of formamide and isocyanic acid after ion irradiation of frozen gas mixtures, Astronomy & Astrophysics, 585, A155
Kim, H. J., Evans, N. J., Dunham, M. M., Lee, J.-E., & Pontoppidan, K. M. 2012, CO2 ice toward low-luminosity embedded protostars: Evidence for episodic mass accretion via chemical history, The Astrophysical Journal, 758, 38
Kouchi, A. 1990, Evaporation of H2O–CO ice and its astrophysical implications, Journal of Crystal Growth, 99, 1220
Kouchi, A., Furuya, K., Hama, T., et al. 2020, Direct Measurements of Activation Energies for Surface Diffusion of CO and CO2 on Amorphous Solid Water Using In Situ Transmission Electron Microscopy, The Astrophysical Journal Letters, 891, L22
Kouchi, A., Yamamoto, T., Kozasa, T., Kuroda, T., & Greenberg, J. 1994, Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices, Astronomy and Astrophysics, 290, 1009
Kouchi, A., Tsuge, M., Hama, T., et al. 2021, Transmission Electron Microscopy Study of the Morphology of Ices Composed of H2O, CO2, and CO on Refractory Grains, The Astrophysical Journal, 918, 45
Kvenvolden, K., Lawless, J., Pering, K., et al. 1970, Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite, Nature, 228, 923
Lacy, J., Baas, F., Allamandola, L., et al. 1984, 4.6 micron absorption features due to solid phase CO and cyano group molecules toward compact infrared sources, The Astrophysical Journal, 276, 533
Lacy, J., Carr, J., Evans, N. J., et al. 1991, Discovery of interstellar methane-Observations of gaseous and solid CH4 absorption toward young stars in molecular clouds, The Astrophysical Journal, 376, 556
Lasne, J., Rosu-Finsen, A., Cassidy, A., McCoustra, M. R., & Field, D. 2015, Spontaneous electric fields in solid carbon monoxide, Physical Chemistry Chemical Physics, 17, 30177
Léger, A., Jura, M., & Omont, A. 1985, Desorption from interstellar grains, Astronomy and Astrophysics, 144, 147
Leto, G., & Baratta, G. 2003, Ly-α photon induced amorphization of Ic water ice at 16 KelvinEffects and quantitative comparison with ion irradiation, Astronomy & Astrophysics, 397, 7
Ligterink, N., Terwisscha van Scheltinga, J., Taquet, V., et al. 2018, The formation of peptide-like molecules on interstellar dust grains, Monthly Notices of the Royal Astronomical Society, 480, 3628
Ligterink, N., Coutens, A., Kofman, V., et al. 2017, The ALMA-PILS survey: detection of CH3NCO towards the low-mass protostar IRAS 16293- 2422 and laboratory constraints on its formation, Monthly Notices of the Royal Astronomical Society, 469, 2219
Loeffler, M., Baratta, G., Palumbo, M., Strazzulla, G., & Baragiola, R. 2005, CO2 synthesis in solid CO by Lyman-α photons and 200 keV protons, Astronomy & Astrophysics, 435, 587
Lovas, F. J., Hollis, J., Remijan, A. J., & Jewell, P. 2006, Detection of ketenimine (CH2CNH) in Sagittarius B2(N) hot cores, The Astrophysical Journal, 645, L137
Luna, R., Domingo, M., Millán, C., Santonja, C., & Satorre, M. 2018a, Study of the frequency factor in the thermal desorption of astrophysical ice analogs: CH4, C2H4, C2H6, CH3OH, CO, CO2, H2O and N2, Vacuum, 152, 278
Luna, R., Luna-Ferrándiz, R., Millán, C., et al. 2017, A fast, direct procedure to estimate the desorption energy for various molecular ices of astrophysical interest, The Astrophysical Journal, 842, 51
Luna, R., Molpeceres, G., Ortigoso, J., et al. 2018b, Densities, infrared band strengths, and optical constants of solid methanol, Astronomy & Astrophysics, 617, A116
Madey, T. E. 1994, History of desorption induced by electronic transitions, Surface science, 299, 824
Maier, G., Reisenauer, H. P., & Rademacher, K. 1998, Cyanocarbene, Isocyanocarbene, and Azacyclopropenylidene: A Matrix-Spectroscopic Study, Chemistry–A European Journal, 4, 1957
Majumdar, L., Gratier, P., Vidal, T., et al. 2016, Detection of CH3SH in protostar IRAS 16293- 2422, Monthly Notices of the Royal Astronomical Society, 458, 1859
Marchione, D., Thrower, J. D., & McCoustra, M. R. 2016, Efficient electron-promoted desorption of benzene from water ice surfaces, Physical Chemistry Chemical Physics, 18, 4026
Martín-Doménech, R., Cruz-Díaz, G., & Muñoz Caro, G. M. 2018, UV photoprocessing of NH3 ice: photon-induced desorption mechanisms, Monthly Notices of the Royal Astronomical Society, 473, 2575
Martín-Doménech, R., Maksiutenko, P., Öberg, K. I., & Rajappan, M. 2020, Exploring the chemistry induced by energetic processing of the H2-bearing, CO-rich apolar ice layer, The Astrophysical Journal, 902, 116
Martín-Doménech, R., Manzano-Santamaría, J., Muñoz Caro, G. M., et al. 2015, UV photoprocessing of CO2 ice: a complete quantification of photochemistry and photon-induced desorption processes, Astronomy & Astrophysics, 584, A14
Martín-Doménech, R., Muñoz Caro, G. M., & Cruz-Díaz, G. 2016, Study of the photon-induced formation and subsequent desorption of CH3OH and H2CO in interstellar ice analogs, Astronomy & Astrophysics, 589, A107
Martín-Doménech, R., Muñoz Caro, G. M., Bueno, J., & Goesmann, F. 2014, Thermal desorption of circumstellar and cometary ice analogs, Astronomy & Astrophysics, 564, A8 Martín-Doménech, R., Rivilla, V., Jiménez-Serra, I., et al. 2017, Detection of methyl isocyanate (CH3NCO) in a solar-type protostar, Monthly Notices of the Royal Astronomical Society, 469, 2230
Mase, K., Nagasono, M., Tanaka, S., et al. 1998, Auger electron photoion coincidence technique combined with synchrotron radiation for the study of the ion desorption mechanism in the region of resonant transitions of condensed H2O, The Journal of chemical physics, 108, 6550
Maté, B., Molpeceres, G., Tanarro, I., et al. 2018, Stability of CH3NCO in Astronomical Ices under Energetic Processing: A Laboratory Study, The Astrophysical Journal, 861, 61
Maté, B., Molpeceres, G., Timón, V., et al. 2017, Laboratory study of methyl isocyanate ices under astrophysical conditions, Monthly Notices of the Royal Astronomical Society, 470, 4222
Maté, B., Rodriguez-Lazcano, Y., Galvez, O., Tanarro, I., & Escribano, R. 2011, An infrared study of solid glycine in environments of astrophysical relevance, Physical Chemistry Chemical Physics, 13, 12268
Mathis, J., Mezger, P., & Panagia, N. 1983, Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds, Astronomy and Astrophysics, 128, 212
McCoustra, M. R., & Thrower, J. D. 2018, Encyclopedia of Interfacial Chemistry, Surface Science and Electrochemistry (Elsevier, Netherlands), 383
McGuire, B. 2018, 2018 census of interstellar, circumstellar, extragalactic, protoplanetary disk, and exoplanetary molecules, The Astrophysical Journal Supplement Series, 239, 17
McGuire, B. A. 2022, 2021 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules, The Astrophysical Journal Supplement Series, 259, 30
Meierhenrich, U. J., Muñoz Caro, G. M., Bredehöft, J. H., Jessberger, E. K., & Thiemann, W. H.-P. 2004, Identification of diamino acids in the Murchison meteorite, Proceedings of the National Academy of Sciences, 101, 9182
Meinert, C., Myrgorodska, I., De Marcellus, P., et al. 2016, Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs, Science, 352, 208
Mejía, C., De Barros, A., Duarte, E. S., et al. 2015, Compaction of porous ices rich in water by swift heavy ions, Icarus, 250, 222
Mencos, A., & Kri, L. 2018, Formation of doubly and triply bonded unsaturated compounds HCN, HNC, and CH2NH via N + CH4 low-temperature solid state reaction: from molecular clouds to solar system objects, Monthly Notices of the Royal Astronomical Society, 476, 5432
Mencos, A., & Krim, L. 2016, Isomerization and fragmentation of acetonitrile upon interaction with N(4S) atoms: the chemistry of nitrogen in dense molecular clouds, Monthly Notices of the Royal Astronomical Society, 460, 1990
Mennella, V., Palumbo, M., & Baratta, G. 2004, Formation of CO and CO2 molecules by ion irradiation of water ice-covered hydrogenated carbon grains, The Astrophysical Journal, 615, 1073
Millán, C., Santonja, C., Domingo, M., Luna, R., & Satorre, M. 2019, An experimental test for effective medium approximations (EMAs)-Porosity determination for ices of astrophysical interest, Astronomy & Astrophysics, 628, A63
Milligan, D. E., & Jacox, M. E. 1971, Infrared spectrum and structure of intermediates in the reaction of OH with CO, The Journal of Chemical Physics, 54, 927
Minissale, M., Dulieu, F., Cazaux, S., & Hocuk, S. 2016, Dust as interstellar catalyst-I. Quantifying the chemical desorption process, Astronomy & Astrophysics, 585, A24
Mitchell, E. H., Raut, U., Teolis, B. D., & Baragiola, R. A. 2017, Porosity effects on crystallization kinetics of amorphous solid water: Implications for cold icy objects in the outer solar system, Icarus, 285, 291
Modica, P., & Palumbo, M. 2010, Formation of methyl formate after cosmic ion irradiation of icy grain mantles, Astronomy & Astrophysics, 519, A22
Muñoz Caro, G. M., Chen, Y.-J., Aparicio, S., et al. 2016, Photodesorption and physical properties of CO ice as a function of temperature, Astronomy & Astrophysics, 589, A19
Muñoz Caro, G. M., Ciaravella, A., Jiménez-Escobar, A., et al. 2019, X-ray versus ultraviolet irradiation of astrophysical ice analogs leading to formation of complex organic molecules, ACS Earth and Space Chemistry, 3, 2138
Muñoz Caro, G. M., & Escribano, R. 2018, Laboratory Astrophysics (Springer)
Muñoz Caro, G. M., Jiménez-Escobar, A., Martín-Gago, J., et al. 2010, New results on thermal and photodesorption of CO ice using the novel InterStellar Astrochemistry Chamber (ISAC), Astronomy & Astrophysics, 522, A108
Mulas, G., Baratta, G., Palumbo, M., & Strazzulla, G. 1998, Profile of CH4 IR bands in ice mixtures, Astronomy and Astrophysics, 333, 1025
Mumma, M. J., & Charnley, S. B. 2011, The chemical composition of comets–emerging taxonomies and natal heritage, Annual Review of Astronomy and Astrophysics, 49, 471
Muñoz Caro, G. M., & Dartois, E. 2013, Prebiotic chemistry in icy grain mantles in space. An experimental and observational approach, Chemical Society Reviews, 42, 2173
Muñoz Caro, G. M., Dartois, E., Boduch, P., et al. 2014, Comparison of UV and high-energy ion irradiation of methanol: ammonia ice, Astronomy & Astrophysics, 566, A93
Muñoz Caro, G. M., & Schutte, W. 2003, UV-photoprocessing of interstellar ice analogs: New infrared spectroscopic results, Astronomy & Astrophysics, 412, 121
Muñoz Caro, G. M., Meierhenrich, U. J., Schutte, W. A., et al. 2002, Amino acids from ultraviolet irradiation of interstellar ice analogues, Nature, 416, 403
Munro, J. J., Harrison, S., Fujimoto, M. M., & Tennyson, J. 2012, A dissociative electron attachment cross-section estimator, Journal of Physics: Conference Series, 388, 012013
Najita, J., Bergin, E. A., & Ullom, J. N. 2001, X-ray desorption of molecules from grains in protoplanetary disks, The Astrophysical Journal, 561, 880
Nomura, H., Aikawa, Y., Tsujimoto, M., Nakagawa, Y., & Millar, T. 2007, Molecular hydrogen emission from protoplanetary disks. II. Effects of X-ray irradiation and dust evolution, The Astrophysical Journal, 661, 334
Nuevo, M., Chen, Y.-J., Yih, T.-S., et al. 2007, Amino acids formed from the UV/EUV irradiation of inorganic ices of astrophysical interest, Advances in Space Research, 40, 1628
Nuevo, M., Cooper, G., & Sandford, S. A. 2018, Deoxyribose and deoxysugar derivatives from photoprocessed astrophysical ice analogues and comparison to meteorites, Nature communications, 9, 5276
Nuevo, M., Meierhenrich, U., Muñoz Caro, G. M., et al. 2006, The effects of circularly polarized light on amino acid enantiomers produced by the UV irradiation of interstellar ice analogs, Astronomy & Astrophysics, 457, 741
Oba, Y., Takano, Y., Watanabe, N., & Kouchi, A. 2016, Deuterium fractionation during amino acid formation by photolysis of interstellar ice analogs containing deuterated methanol, The Astrophysical Journal Letters, 827, L18
Öberg, K. I. 2016, Photochemistry and astrochemistry: Photochemical pathways to interstellar complex organic molecules, Chemical Reviews, 116, 9631
Öberg, K. I., Boogert, A. A., Pontoppidan, K. M., et al. 2008, The c2d Spitzer spectroscopic survey of ices around low-mass young stellar objects. III. CH4, The Astrophysical Journal, 678, 1032
Öberg, K. I., Boogert, A. A., Pontoppidan, M., et al. 2011, The Spitzer ice legacy: Ice evolution from cores to protostars, The Astrophysical Journal, 740, 109
Öberg, K. I., Fraser, H. J., Boogert, A. A., et al. 2007a, Effects of CO2 on H2O band profiles and band strengths in mixed H2O:CO2 ices, Astronomy & Astrophysics, 462, 1187
Öberg, K. I., Fuchs, G. W., Awad, Z., et al. 2007b, Photodesorption of CO ice, The Astrophysical Journal Letters, 662, L23
Öberg, K. I., Guzmán, V. V., Furuya, K., et al. 2015, The comet-like composition of a protoplanetary disk as revealed by complex cyanides, Nature, 520, 198
Öberg, K. I., van Dishoeck, E. F., & Linnartz, H. 2009, Photodesorption of ices I: CO, N2, and CO2, Astronomy & Astrophysics, 496, 281
Okabe, H., et al. 1978, Photochemistry of small molecules, Vol. 431 (Wiley New York)
Ovchinnikov, M. A., & Wight, C. A. 1993, Inhomogeneous broadening of infrared and Raman spectral bands of amorphous and polycrystalline thin films, The Journal of chemical physics, 99, 3374
Paardekooper, D., Bossa, J.-B., & Linnartz, H. 2016, Laser desorption time-of-flight mass spectrometry of vacuum UV photo-processed methanol ice, Astronomy & Astrophysics, 592, A67
Palumbo, M. 2006, Formation of compact solid water after ion irradiation at 15 K, Astronomy & Astrophysics, 453, 903
Palumbo, M., Baratta, G., Brucato, J., et al. 1998, Profile of the CO2 bands produced after ion irradiation of ice mixtures, Astronomy and Astrophysics, 334, 247
Palumbo, M. E., Baratta, G. A., Collings, M. P., & McCoustra, M. R. 2006, The profile of the 2140 cm-1 solid CO band on different substrates, Physical Chemistry Chemical Physics, 8, 279
Parent, P., Laffon, C., Mangeney, C., Bournel, F., & Tronc, M. 2002, Structure of the water ice surface studied by x-ray absorption spectroscopy at the O K-edge, The Journal of chemical physics, 117, 10842
Pearl, J., Ngoh, M., Ospina, M., & Khanna, R. 1991, Optical constants of solid methane and ethane from 10,000 to 450 cm-1, Journal of Geophysical Research: Planets, 96, 17477
Penteado, E., Boogert, A., Pontoppidan, K., et al. 2015, Spectroscopic constraints on CH3OH formation: CO mixed with CH3OH ices towards young stellar objects, Monthly Notices of the Royal Astronomical Society, 454, 531
Piétu, V., Dutrey, A., & Guilloteau, S. 2007, Probing the structure of protoplanetary disks: a comparative study of DM Tau, LkCa 15, and MWC 480, Astronomy & Astrophysics, 467, 163
Pilling, S., & Bergantini, A. 2015, The effect of broadband soft X-rays in SO2-containing ices: implications on the photochemistry of ices toward young stellar objects, The Astrophysical Journal, 811, 151
Pilling, S., Duarte, E. S., Da Silveira, E., et al. 2010, Radiolysis of ammonia-containing ices by energetic, heavy, and highly charged ions inside dense astrophysical environments, Astronomy & Astrophysics, 509, A87
Pineau des Forêts, G., Roueff, E., & Flower, D. 1992, The two chemical phases of dark interstellar clouds, Monthly Notices of the Royal Astronomical Society, 258, 45P
Pineda, J. L., Goldsmith, P. F., Chapman, N., et al. 2010, The relation between gas and dust in the Taurus molecular cloud, The Astrophysical Journal, 721, 686
Pontoppidan, K., van Dishoeck, E., & Dartois, E. 2004, Mapping ices in protostellar environments on 1000 AU scales-methanol-rich ice in the envelope of serpens SMM 4, Astronomy & Astrophysics, 426, 925
Pontoppidan, K., Fraser, H., Dartois, E., et al. 2003, A 3–5 ��m VLT spectroscopic survey of embedded young low mass stars I-Structure of the CO ice, Astronomy & Astrophysics, 408, 981
Pontoppidan, K. M., Boogert, A. C., Fraser, H. J., et al. 2008, The c2d Spitzer spectroscopic survey of ices around low-mass young stellar objects. II. CO2, The Astrophysical Journal, 678, 1005
Prasad, S. S., & Tarafdar, S. P. 1983, UV radiation field inside dense clouds-Its possible existence and chemical implications, The Astrophysical Journal, 267, 603
Pugh, L. A., & Narahari Rao, K. 1976, Intensities from infrared spectra, Molecular Spectroscopy: Modern Research, Volume II, 165
Raunier, S., Chiavassa, T., Marinelli, F., & Aycard, J.-P. 2004, Experimental and theoretical study on the spontaneous formation of OCN- ion: reactivity between HNCO and NH3/H2O environment at low temperature, Chemical Physics, 302, 259
Raut, U., Teolis, B., Loeffler, M., et al. 2007, Compaction of microporous amorphous solid water by ion irradiation, The Journal of chemical physics, 126, 244511
Rawlings, J., Williams, D., Viti, S., Cecchi-Pestellini, C., & Duley, W. 2013, Episodic explosions in interstellar ices, Monthly Notices of the Royal Astronomical Society, 430, 264
Reimann, C., Brown, W., & Johnson, R. 1988, Electronically stimulated sputtering and luminescence from solid argon, Physical Review B, 37, 1455
Ribas, I., Guinan, E. F., Güdel, M., & Audard, M. 2005, Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1-1700 Å), The Astrophysical Journal, 622, 680
Roberts, J., Rawlings, J., Viti, S., & Williams, D. 2007, Desorption from interstellar ices, Monthly Notices of the Royal Astronomical Society, 382, 733
Rosen, B. 2013, Spectroscopic data relative to diatomic molecules, Vol. 17 (Elsevier)
Sakai, N., Sakai, T., Hirota, T., & Yamamoto, S. 2008, Abundant carbon-chain molecules toward the low-mass protostar IRAS 04368+ 2557 in L1527, The Astrophysical Journal, 672, 371
Sandford, S., & Allamandola, L. 1990, The physical and infrared spectral properties of CO2 in astrophysical ice analogs, The Astrophysical Journal, 355, 357
Sandford, S. A., & Allamandola, L. J. 1993, Condensation and vaporization studies of CH3OH and NH3 ices: Major implications for astrochemistry, The Astrophysical Journal, 417, 815
Satorre, M., Domingo, M., Millán, C., et al. 2008, Density of CH4, N2 and CO2 ices at different temperatures of deposition, Planetary and Space Science, 56, 1748
Savitsky, G. B., & Hornig, D. F. 1962, Infrared Spectra and Structures of the Crystalline Phases of CH4 and CD4, The Journal of Chemical Physics, 36, 2634
Schwoerer, M., & Wolf, H. C. 2007, Organic molecular solids (John Wiley & Sons)
Sekitani, T., Ikenaga, E., Tanaka, K., et al. 1997, Auger-electron-ion coincidence study of photon-stimulated ion desorption for condensed acetonitrile, Surface science, 390, 107
Seperuelo Duarte, E., Domaracka, A., Boduch, P., et al. 2010, Laboratory simulation of heavyion cosmic-ray interaction with condensed CO, Astronomy & Astrophysics, 512, A71
Shen, C., Greenberg, J., Schutte, W., & van Dishoeck, E. 2004, Cosmic ray induced explosive chemical desorption in dense clouds, Astronomy & Astrophysics, 415, 203
Shu, F. H. 1977, Self-similar collapse of isothermal spheres and star formation, The Astrophysical Journal, 214, 488
Shu, F. H., Adams, F. C., & Lizano, S. 1987, Star formation in molecular clouds-Observation and theory, Annual review of astronomy and astrophysics, 25, 23
Sicilia, D., Ioppolo, S., Vindigni, T., Baratta, G., & Palumbo, M. E. 2012, Nitrogen oxides and carbon chain oxides formed after ion irradiation of CO:N2 ice mixtures, Astronomy & Astrophysics, 543, A155
Sie, N.-E., Muñoz Caro, G. M., Huang, Z.-H., et al. 2019, On the Photodesorption of CO2 Ice Analogs: The Formation of Atomic C in the Ice and the Effect of the VUV Emission Spectrum, The Astrophysical Journal, 874, 35
Sivaraman, B., Raja Sekhar, B., Fulvio, D., et al. 2013, Ozone and carbon trioxide synthesis by low energy ion implantation onto solid carbon dioxide and implications to astrochemistry, The Journal of chemical physics, 139, 074706
Smith, M. A. H., Rinsland, C. P., Fridovich, B., & Rao, K. 1985, Molecular SpectroscopyModern Research, Vol. III, Academic Press, London
Smith, R. G., Sellgren, K., & Tokunaga, A. T. 1989, Absorption features in the 3 micron spectra of protostars, The Astrophysical Journal, 344, 413
Solomon, P., Jefferts, K., Penzias, A., & Wilson, R. 1971, Detection of millimeter emission lines from interstellar methyl cyanide, The Astrophysical Journal, 168, L107
Stahler, S. W., & Palla, F. 2008, The formation of stars (John Wiley & Sons)
Stamatovic, A., & Schulz, G. 1970, Dissociative Attachment in CO and Formation of C-, The Journal of Chemical Physics, 53, 2663
Suzuki, M., & Taga, Y. 2001, Numerical study of the effective surface area of obliquely deposited thin films, Journal of Applied Physics, 90, 5599
Tait, R., Smy, T., & Brett, M. 1993, Modelling and characterization of columnar growth in evaporated films, Thin Solid Films, 226, 196
Telfer, M. W., Parteli, E. J., Radebaugh, J., et al. 2018, Dunes on Pluto, Science, 360, 992
Theule, P., Duvernay, F., Ilmane, A., et al. 2011, Kinetics of the OCN- and HOCN formation from the HNCO + H2O thermal reaction in interstellar ice analogs, Astronomy & Astrophysics, 530, A96
Tribbett, P. D., & Loeffler, M. J. 2021, The sputtering of radiolytic O2 in ion irradiated H2O-ice, Surface Science, 707, 121797
Tsuge, M., Nguyen, T., Oba, Y., et al. 2020, UV-ray irradiation never causes amorphization of crystalline CO2: A transmission electron microscopy study, Chemical Physics Letters, 760, 137999
Unger, I., Hollas, D., Seidel, R., et al. 2015, Control of X-ray induced electron and nuclear dynamics in ammonia and glycine aqueous solution via hydrogen bonding, The Journal of Physical Chemistry B, 119, 10750
van Broekhuizen, F., Groot, I., Fraser, H., van Dishoeck, E., & Schlemmer, S. 2006, Infrared spectroscopy of solid CO–CO2 mixtures and layers, Astronomy & Astrophysics, 451, 723
van Broekhuizen, F., Keane, J., & Schutte, W. 2004, A quantitative analysis of OCN- formation in interstellar ice analogs, Astronomy and Astrophysics, 415, 425
van Broekhuizen, F., Pontoppidan, K., Fraser, H., & van Dishoeck, E. 2005, A 3–5 mum VLT spectroscopic survey of embedded young low mass stars II-Solid OCN, Astronomy & Astrophysics, 441, 249
Van der Velden, W., & Schwartz, A. W. 1977, Search for purines and pyrimidines in the Murchison meteorite, Geochimica et Cosmochimica Acta, 41, 961
van Dishoeck, E. F., & Blake, G. A. 1998, Chemical evolution of star-forming regions, Annual Review of Astronomy and Astrophysics, 36, 317
van Dishoeck, E. F., Herbst, E., & Neufeld, D. A. 2013, Interstellar water chemistry: from laboratory to observations, Chemical Reviews, 113, 9043
van Dishoeck, E. F., Jonkheid, B., & van Hemert, M. C. 2006, Photoprocesses in protoplanetary disks, Faraday Discussions, 133, 231
van Hemert, M. C., Takahashi, J., & van Dishoeck, E. F. 2015, Molecular dynamics study of the photodesorption of CO ice, The Journal of Physical Chemistry A, 119, 6354
Varetti, E. L., & Pimentel, G. C. 1971, Isomeric forms of dinitrogen trioxide in a nitrogen matrix, The Journal of Chemical Physics, 55, 3813
Vasconcelos, F., Pilling, S., Rocha, W., et al. 2017, Ion irradiation of pure and amorphous CH4 ice relevant for astrophysical environments, Physical Chemistry Chemical Physics, 19, 12845
Vinogradoff, V., Duvernay, F., Danger, G., et al. 2013, Formaldehyde and methylamine reactivity in interstellar ice analogues as a source of molecular complexity at low temperature, Astronomy & Astrophysics, 549, A40
Vishwakarma, G., Malla, B. K., Methikkalam, R. R. J., & Pradeep, T. 2022, Rapid crystallization of amorphous solid water by porosity induction, Physical Chemistry Chemical Physics
Walsh, C., Millar, T., & Nomura, H. 2010, Chemical processes in protoplanetary disks, The Astrophysical Journal, 722, 1607
Walsh, C., Nomura, H., Millar, T., & Aikawa, Y. 2012, Chemical processes in protoplanetary disks. II. On the importance of photochemistry and X-ray ionization, The Astrophysical Journal, 747, 114
Watanabe, N., & Kouchi, A. 2002, Measurements of conversion rates of CO to CO2 in ultraviolet-induced reaction of D2O (H2O)/CO amorphous ice, The Astrophysical Journal, 567, 651
Weinberg, D., Davé, R., Katz, N., & Kollmeier, J. 2003, in AIP Conf. Ser, Vol. 666, 157
Westley, M., Baragiola, R., Johnso, R., & Baratta, G. 1995a, Ultraviolet photodesorption from water ice, Planetary and Space Science, 43, 1311
Westley, M., Baragiola, R., Johnson, R., & Baratta, G. 1995b, Photodesorption from lowtemperature water ice in interstellar and circumsolar grains, Nature, 373, 405
Whittet, D., Gerakines, P., Tielens, A., et al. 1998, Detection of abundant CO2 ice in the quiescent dark cloud medium toward Elias 16, The Astrophysical Journal Letters, 498, L159
Willacy, K., & Langer, W. 2000, The importance of photoprocessing in protoplanetary disks, The Astrophysical Journal, 544, 903
Willacy, K., & Millar, T. 1998, Desorption processes and the deuterium fractionation in molecular clouds, Monthly Notices of the Royal Astronomical Society, 298, 562
Williams, D. 1985, On the abundance of molecular hydrogen in the galaxy, Quarterly Journal of the Royal Astronomical Society, 26, 463
Wilson, C. D. 1997, Atomic carbon emission from individual molecular clouds in M33, The Astrophysical Journal Letters, 487, L49
Woitke, P., Min, M., Thi, W.-F., et al. 2018, Modelling mid-infrared molecular emission lines from T Tauri stars, Astronomy & Astrophysics, 618, A57
Woon, D. E. 2002, Pathways to glycine and other amino acids in ultraviolet-irradiated astrophysical ices determined via quantum chemical modeling, The Astrophysical Journal, 571, L177
Yamada, H., & Person, W. B. 1964, Absolute infrared intensities of the fundamental absorption bands in solid CO2 and N2O, The Journal of Chemical Physics, 41, 2478
Yuan, C., & Yates, J. J. T. 2014, Radiation damage and associated phase change effect on photodesorption rates from ices–lyα studies of the surface behavior of CO2 (ice), The Astrophysical Journal, 780, 8
Zamirri, L., Casassa, S., Rimola, A., et al. 2018, IR spectral fingerprint of carbon monoxide in interstellar water–ice models, Monthly Notices of the Royal Astronomical Society, 480, 1427
Zhao, Y., He, Y., & Brown, C. 2012, Composition dependent nanocolumn tilting angle during the oblique angle co-deposition, Applied Physics Letters, 100, 033106
Zheng, W., Jewitt, D., Osamura, Y., & Kaiser, R. I. 2008, Formation of nitrogen and hydrogenbearing molecules in solid ammonia and implications for solar system and interstellar ices, The Astrophysical Journal, 674, 1242
Zhu, H., Cao, W., Larsen, G. K., Toole, R., & Zhao, Y. 2012, Tilting angle of nanocolumnar
films fabricated by oblique angle deposition, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 30, 030606
Ziurys, L. M., Apponi, A., Hollis, J., & Snyder, L. 1994, Detection of interstellar N2O: A new molecule containing an NO bond, The Astrophysical Journal, 436, L181
指導教授 陳俞融(Yu-Jung Chen) 審核日期 2022-12-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明