博碩士論文 107322065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:13.59.1.108
姓名 顏兆國(ZHAO-GUO YAN)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以活性粉混凝土製作低放廢棄物盛裝容器配比研究
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要分為兩大主軸,第一部分為活性粉混凝土的配比參數選擇,以水膠比0.22配比為基礎驗證不同石英砂粒徑分布對混凝土孔隙率的影響,並以3號石英砂做為製作混凝土試體的依據,調整減水劑及鋼纖維的添加以決定所需的工作性,選定減水劑及鋼纖維添加量進行不同水膠比配比流度控制,再利用振動台振動60秒方式製作試體;同時,為提升盛裝容器混凝土之品質,利用90℃熱水養護1天加速活性粉混凝土水化反應以改善內部微結構。第二部分為降低水膠比(W/B = 0.22、0.20及0.18),針對活性粉混凝土的力學特性及體積穩定性製作多種配比之試體,一方面提出優化之活性粉混凝土配比,另一方面評估活性粉混凝土應用於盛裝容器上的潛力。
試驗結果顯示,混凝土三種水膠比配比利用90℃熱水養護方法製作試體,進行抗壓強度、劈裂、直接拉力、孔隙率、體積穩定性、表面電阻率試驗,在硬固性質方面,因水化程度上升,以水膠比0.18配比試體表現較為優異,顯示降低水膠比確實能提高強度以抵抗外在衝擊;在耐久性質方面,因採用低水膠比及高溫熱水養護加速卜作嵐反應,三種水膠比混凝土配比性質差異並不顯著,在表面電阻率試驗結果方面,水膠比0.22配比試體電阻率試驗因孔隙率較高的影響故較其他配比低,較大的孔隙率將會導致電流更容易在混凝土內傳輸。
本研究與先前研究團隊所使用之配比M進行比較,發現活性粉混凝土配比在抗壓強度及孔隙率試驗中具有較好的表現,顯示活性粉混凝土也適用於研發高完整性盛裝容器配比。
摘要(英) Based on the ratio of 0.22 water-binder ratio, the influence of different silica sand particle size distribution on the porosity of concrete, and No. 3 silica sand is used as the basis for making concrete, adjust the addition of superplasticizer and steel fiber to determine the workability,and use the vibrating table to vibrate for 60 seconds to make the concrete. In addition, in order to improve the quality of concrete container, use 90℃ hot water curing for 1 day to improve the internal microstructure of reactive powder concrete. Reduce the water-binder ratio (W/B=0.22, 0.20 and 0.18) and use hot water curing to improve the internal compactness of the concrete and improve its quality and service performance.
The test results show that the three kinds of concrete proportions are hot water curing at 90℃.In terms of hardening properties, due to increased hydration, 0.18 water binder ratio shows that reducing the water binder ratio can increase the strength; in terms of durability, use low water binder ratio and high-temperature curing accelerates the reaction of pozzolanic reaction. There is no significant difference in the properties of the three concrete mixtures. In terms of the surface resistivity test,0.22 water binder ratio is lower than other ratios due to the higher porosity,large porosity will cause electric current to be transmitted in the concrete more easier.
This study is compared with the mixture M, and it is found that reactive powder concrete has better performance in the compressive strength and porosity test, which shows that reactive powder concrete is also suitable for the development of high integrity container.
關鍵字(中) ★ 活性粉混凝土
★ 高完整性盛裝容器
★ 熱養護
★ 矽灰
關鍵字(英) ★ Reactive Powder Concrete
★ Highly Integrated Container
★ Heat Curing
★ Silica Fume
論文目次 摘要 i
Abstractii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的 1
1-3 研究內容 2
第二章 文獻回顧 4
2-1 放射性廢棄物 4
2-1-1 低放射性廢棄物 4
2-1-2 放射性廢棄物之分類 5
2-1-3 低放射性廢棄物最終處置及其設施安全管理規則 6
2-1-4 低放射性廢棄物最終處置場案例 9
2-2 各國容器應用 19
2-2-1 韓國 19
2-2-2 法國 20
2-3 活性粉混凝土 21
2-3-1 基本設計原理 21
2-3-2 添加卜作嵐摻料之影響 23
2-4 混凝土力學與耐久性評估 25
2-4-1 高溫養護與混凝土品質 25
2-4-2 添加纖維對混凝土劈裂強度的影響 27
2-4-3 添加鋼纖維與抗拉強度之關係 28
2-4-4 添加鋼纖維對電阻率影響 30
2-4-5 表面電阻率與其他相關相關性試驗 31
2-4-6 不同飽和方法對混凝土孔隙率量測 32
2-4-7 混凝土收縮機制 33
2-5 電子顯微鏡(SEM)試驗 36
2-6 X光繞射分析(XRD)試驗 42
第三章 實驗材料與規劃 46
3-1 實驗材料 46
3-2 實驗設備 50
3-3 實驗內容及方法 56
3-3-1 實驗流程 56
3-3-2 實驗變數 62
3-3-3 實驗方法 65
第四章 初步實驗結果與分析 71
4-1 石英砂粒徑及分布選擇 72
4-2 鋼纖維添加比例 77
4-3 減水劑用量 81
4-4 搗實方式 87
4-5 養護方式及天數 89
第五章 容器混凝土配比研發與品質提升之成效 92
5-1 配比流度控制 93
5-2 抗壓強度試驗 94
5-3 孔隙率試驗 95
5-4 劈裂試驗 97
5-5 直接拉力試驗 98
5-6 體積穩定性試驗 101
5-7 表面電阻率試驗 102
5-8 電子顯微鏡觀察 104
5-9 X光繞射分析試驗 106
第六章 結論與建議 109
6-1 結論 109
6-2 建議 111
參考文獻 112
參考文獻 台灣電力公司:http://www.taipower.com.tw/
行政院原子能委員會:http://www.aec.gov.tw/
經濟部低放射性廢棄物最終處置:http://www.llwfd.org.tw/index.aspx
行政院原子能委員會,低放射性廢棄物(低階核廢料)最終處置的安全管理(2014)。
行政院原子能委員會,低放射性廢棄物盛裝容器審查導則研究 (2012)
李金輝,「黃氏富勒緻密配比設計法應用於活性粉混凝土性質之研究」,碩士論文,國立台灣科技大學,台北(2006)。
王心荻,「試體參數對混凝土電阻值影響之研究」,碩士論文,國立台灣海洋大學,基隆(2009)。
莊美玲,「活性粉混凝土應用於低放射性廢棄物最終處置場工程障壁材料之耐久性評估」,博士論文,國立中央大學土木工程研究所,中壢(2014)。
葉佳煊,「熱養護混凝土應用於低放射性廢棄物盛裝容器之障壁功能試驗評估」,碩士論文,國立中央大學土木工程研究所,中壢(2019)。
AASHTO T358-15 Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration.
ASTM C642-13 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete.
Ahmad,S., Zubair, A., and Maslehuddin, M. (2015), “Effect of key mixture parameters on flow and mechanical properties of reactive powder concrete.” Construction and Building Materials, Vol. 99, pp. 73-81.
Abo-El-Enein, S. A., El-kady, G., El-Sokkary, T. M., and Gharieb, M. (2015), “Physico-mechanical properties of composite cement pastes containing silica fume and fly ash.” Housing and Building National Research Center, Vol. 11, pp. 7-15.
Bouziadi, F., Boulekbache, B., and Hamrat, M.(2016). “The effects of fibres on the shrinkage of high-strength concrete under various curing temperatures.” Construction and Building Materials, Vol. 114, pp. 40-48.
Bai, J., Wild, S., and Sabir, B. B. (2003). “Chloride ingress and strength loss in concrete with different PC-PFA-MK binder compositions exposed to synthetic seawater.” Cement and Concrete Research, Vol. 33, pp. 353-362.
Bandelj, B., Saje, D., Šušteršič, J., Lopatič, J., and Saje, F. (2011). “Free Shrinkage of High Performance Steel Fibre Reinforced Concrete.” Journal of Testing and Evaluation, 39(2), 166-176.
Cwirzen, C., Penttala, V., and Vornanen, C.(2008). “Reactive powder based concretes: Mechanical properties, durability and hybrid use with OPC.” Cement and Concrete Research, Vol. 38, pp. 1217-1226.
Frazao, C., Camoes, A., Barros, J., and Goncalves, D.(2015). “Durability of steel fiber reinforced self-compacting concrete.” Construction and Building Materials, Vol. 80, pp. 155-166.
Fantilli, A. P., Mihashi, H., and Vallini, H. (2009). “ Multiple cracking and strain hardening in fiber-reinforced concrete under uniaxial tension. ” Cement and concrete research, Vol. 39, pp. 1217–1229.
Gesoğlu, M., Güneyisi, E., Muhyaddin, G.F., Asaad, D. S., and Yılmaz, M. E.(2016) “Strain hardening ultra-high performance fiber reinforced cementitious composites:Effect of fiber type and concentration.” Composites Part B.
Gettu, R., Gardner D.R., Saldivar H., and Barragfin B.E.(2005). “Study of the distribution and orientation of fibers in SFRC specimens ”, Materials and Structures, Vol. 38, pp. 31-37.
Gowers, K. R., and Millard, S. G. (1999). “Measurement of concrete resistivity for assessment of corrosion severity of steel using wenner technique” ACI Materials Journal , Vol. 96, No. 5, pp.536-541.
Helmi, M., Hall, M. R., Stevens, L. A., and Rigby, S. P. (2016). “Effects of high-pressure/temperature curing on reactive powder concrete microstructure formation.” Construction and Building Materials, Vol. 105, pp. 554-562.
Hiremath, P. N., and Yaragal, S. C. (2017). “Effect of different curing regimes and durations on early strength development of reactive powder concrete.” Construction and Building Materials, Vol. 154, pp. 72-87.
Hudoba, I.(2007). “Utilization of concrete as a construction material in the concept of Radioactive Waste Storage in Slovak Republic.” mimoriadne číslo, Vol. 12, pp. 157-161.
Hassan, A. M. T., Jones, S. W., and Mahmud, G. H. (2012). “Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC).” Construction and Building Materials, Vol. 37, pp. 874-882.
Jussara, T., Ardani, A. (2012). “Surface Resistivity Test Evaluation as an Indicator of the Chloride Permeability of Concrete”, Federal Highway Administration.
Jadrová vyraďovacia spoločnosť. (2006). “The EIA Report of V1 NPP Decommissioning”, Slovakia.
Khan, K., and Amin, M. N. (2017) “Influence of fineness of volcanic ash and its blends with quarry dust and slag on compressive strength of mortar under different curing temperatures” Construction and Building Materials, Vol.154, pp. 514-528.
Kang, S. T., Lee, Y., Park, Y. D., and Kim, J. K. (2010). “Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber” Composite structures, Vol.92, pp. 61-71.
Lee, N. P., and Chisholm, D, H. (2005). “Reactive powder concrete” Study Report SR 146, BRANZ Ltd, Judgeford, New Zealand.
Mostofinejad, D., Nikoo, M. R., and Hosseini, S. A. (2016) “Determination of optimized mix design and curing conditions of reactive powder concrete (RPC)” Construction and Building Materials, Vol.123, pp. 754-767.
Morris, W., Moreno, E.I., and SagiiCs, A.A.(1996). “Practical evaluation of resistivity of concrete in test cylinders using a wenner array probe.” Cement and Concrete Research, Vol. 26, No. 12, pp. 1779-1787.
Maddalena, R., Li, K., Chater, P. A., Michalik, S., and Hamilton, A. (2019). “Direct synthesis of a solid calcium-silicate-hydrate (C-S-H).” Construction and Building Materials, Vol. 223, pp. 554-565.
Naaman, A. E. (2003). “Engineered steel fibers with optimal properties for reinforcement of cement composites.” Journal of Advanced Concrete Technology, Vol. 1, No. 3, pp. 241-252.
Polder, R.B. (2001). “Test methods for on site measurement of resistivity of concrete a RILEM TC-154 technical recommendation.” Construction and Building Materials, pp. 125-131.
Richard, P., and Cheyrezy, M. (1995). “ Composition of reactive powder concretes. ” Cement and concrete research, Vol. 25, No. 7, pp. 1501–1511.
Ramezanianpour, A.A., Pilvar, A., Mahdikhani, M., and Moodi, F. (2011). “ Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength. ”, Construction and Building Materials, Vol. 25, pp. 2472–2479.
Rokugo, K. (2008). “ Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks(HPFRCC). ” Concrete Engineering series, Japan Society of Engineers, Vol. 82.
Sengul, O.(2014). “Use of electrical resistivity as an indicator for durability.”, Construction and Building Materials, Pages 434–441.
Song, S., Jiang, L., Jiang, S., Yan, X., and Xu, N. (2018). “The mechanical properties and electrochemical behavior of cement paste containing nano-MgO at different curing temperature.” Construction and Building Materials, Vol. 164, pp. 663–671.
Shen, P., Lu, L., He, Y., Rao, M., Fu, Z., and Wang, F. (2018). “Experimental investigation on the autogenous shrinkage of steam cured ultra-high performance concrete.” Construction and Building Materials, Vol. 162, pp.512–522.
Shaikh, F. U. A., Luhar, S., Arel, H. S., and Luhar, I. (2020). “ Performance evaluation of Ultrahigh performance fibre reinforced concrete – A review.”, Construction and Building Materials, Vol. 232, pp. 117152.
Shafieifar, M., Farzad, M., and Azizinamini, A. (2017). “Experimental and numerical study on mechanical properties of Ultra High Performance Concrete (UHPC).” Construction and Building Materials, Vol. 156, pp. 402-411.
Song, H.W., Lee, C.H., and Ann, K.Y. (2008). “Factors influencing chloride transport in concrete structures exposed to marine environments,” Cement and concrete composites, Vol. 30, pp. 113-121.
Euratom Research and training programme. (2018) “Waste Acceptance Criteria and requirements in terms of characterisation.”
Tran, N.T., Tran, T.K., and Kim, D.J. (2015). “High rate response of ultra-high-performance fiber-reinforced concretes under direct tension.” Cement and concrete composites, Vol. 69, pp. 72-87.
Tam, C. M., Tam, Vivian W. Y., and Ng, K. M. (2012). “Assessing drying shrinkage and water permeability of reactive powder concrete produced in Hong Kong.”, Construction and Building Materials, Vol. 26, pp. 79–89.
Young, J.F., Mindess, S., and Darwin, D. (2002). Concrete, Prentice Hall, Inc., Upper Saddle River, New Jersey, U.S.A..
Wu, Z., Shi, C., and Khayat, K.H. (2016). “Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials(UHSC),” Cement and concrete composites, Vol. 71, pp. 97-109.
Xun, X., Ronghua, Z., and Yinghu, L.(2020). “Influence of curing regime on properties of reactive powder concrete containing waste steel fibers.” Construction and Building Materials, Vol. 232, pp. 117129.
Yoo, D. Y., Kim, S., Kim, J. J., and Chun, B. (2019). “ An experimental study on pullout and tensile behavior of ultra-highperformance concrete reinforced with various steel fibers.”, Construction and Building Materials, Vol. 206, pp. 46–61.
Yoo, D. Y., Shin, W., and Chun, B. (2020). “ Corrosion effect on tensile behavior of ultra-high-performance concrete reinforced with straight steel fibers.”, Cement and concrete composites, Vol.109, pp. 103566.
Yazici, H., Deniz, E., Baradan., and Baradan, B. (2013). “ The effect of autoclave pressure, temperature and duration time on mechanical properties of reactive powder concrete.”, Construction and Building Materials, Vol. 42, pp. 53-63.
Yazıcı, H., Yardımcı, M. Y., Aydın., S. and Karabulut, A. (2009). “ Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes.”, Construction and Building Materials, Vol. 23, pp. 1223-1231.
Zanni, H., Cheyrezy, M., Maret, V., Philippot, S., and Nieto, P. (1996). “Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using “Si NMR”.” Cement and concrete research , Vol. 26, pp. 93-100.
Zheng, W., Luo, B., and Wang, Y. (2013). “Compressive and tensile properties of reactive powder concrete with steel fibres at elevated temperatures.” Construction and Building Materials , Vol. 41, pp. 844-851.
Zdeb, T., and Sliwinski, J. (2009). “The influence of steel fibre content and curing conditions onmechanical properties and dfformability of reactive powder concrete at bending.” Brittle Matrix Composites 9.
Zdeb, T. (2019). “Effect of vacuum mixing and curing conditions on mechanical properties and porosity of reactive powder concretes.” Construction and Building Materials, Vol. 209, pp. 326-339.
Zhang, Z., Shao, X. D., and Zhu, P. (2020). “Direct tensile behaviors of steel-bar reinforced ultra-high performance fiber reinforced concrete: Effects of steel fibers and steel rebars.” Construction and Building Materials, Vol. 243, pp. 118054.
指導教授 黃偉慶 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明