博碩士論文 107322089 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:13.59.228.75
姓名 洪一展(Yi-Chan Hung)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 利用行動測深系統產製淺水區深度模型
(Using Mobile Bathymetry System to Produce Bathymetry Model in Shallow Water Area)
相關論文
★ 結合多種遙測衛星數據觀測湄公河水資源變化★ 利用多時期之衛星影像改進孟加拉地區之地表水量化
★ 利用ALOS SAR影像觀測2008當雄地震同震及震後形變量★ 利用衛星影像觀測2004年印度洋地震震後之海岸地形垂直變化
★ 利用綜合遙測資訊建置之高程模型觀測近岸地形時序變遷★ 整合Sentinel-1與TerraSAR-X 永久散射體雷達差干涉法以監測地表變形
★ 利用區域電離層模式校正Sentinel-1差分干涉以偵測臺灣地表變形★ 利用衛星影像間接建立全台海岸地形模型
★ 應用Sentinel-1衛星TOPS合成孔徑雷達及最小基線長分析技術監測越南河內的地層下陷★ Sentinel-1 Radar Interferometry Decomposes Land Subsidence in Taiwan
★ 以自相似算法進行衛星影像融合和水線判釋★ 基於卷積神經網路於光學衛星影像進行跨衛星之雲偵測
★ 利用衛星遙測資訊於稻米產量預測★ 利用ICESat-2及Sentinel-2反演南海近岸水深
★ 以多元衛星影像監測青藏高原湖泊長期水量變化★ 使用動態門檻值選取對衛星影像進行非監督式變遷偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-2以後開放)
摘要(中) 深入瞭解地表地形與水體的相關資訊是模擬淹水情境、灌溉分析等其他應用的關鍵。多光譜影像與透水光達為常見的水下建模工具,該兩種屬於光學測深方式,此外亦有聲學測深裝置如單音束、多音束測深儀,利用聲學回波的性質探測水深甚至分類水底地貌。然而,光學測深僅適用於水質潔淨、淺水的實驗場域,聲學測深則是在船載與設備上的調度有相當大的成本。近年來,隨著消費級無人機的成本降低,使其廣泛地運用在地理資訊領域中。無人機的高機動性、懸停精準性提供另一種移動操作平台。
為了探討行動測深系統於淺水水域量測水深與體積的可行性,本研究選擇桃園地區的埤塘群做為研究水域,結合無人機、微型聲納並針對80口埤塘進行外業。每口埤塘需要三至四位工作人員,其耗時約一小時至一小時半。懸掛微型聲納、手機的無人機在各實驗點位停留一分鐘以獲取足夠的深度估計,並操作另一台無人機進行航拍,期間佈設控制點以在後續建模時提供地面定位座標,最後量測埤塘的平均坡度與水門高供內業使用。內業中使用反距離權重法與邊緣坡度、水門高建置埤塘水下模型,並利用航照、控制點建置地上模型,其水深、最大蓄水體積可以由水下模型得出,結合上述模型即可得到整合模型。本研究與桃園水務局資料庫相比較,其面積與體積的相關係數分別是0.99和0.84。最後利用簡易淹水模式模擬桃園市八德區之淹水情況,設計三種情境討論埤塘系統對於淹水事件可貢獻之效益,並說明埤塘系統與外業更新體積之效益。
摘要(英) A thorough understanding of surface terrain and the information of inland waterbodies is crucial for flood prevention, irrigation management, and other hydrological applications. Nowadays, multispectral satellite images and LiDAR are widely used to establish underwater model with optical methods. Another possibility is to use single/multi-beam echo sounders to survey in acoustic approaches. However, optical methods are only appropriate for shallow and clean water, while acoustic methods would require considerable cost in dispatching vessels and equipment. The reduced cost of commercial unmanned aerial vehicle (UAV) in recent years has facilitated its wide applications in geoinformatics fields. Owing to its high mobility, UAV provides another kind of mobile platform for the surveying equipment.
In order to update water depth and water volume of 80 ponds in Taoyuan city, this study deploys a mobile bathymetric mapping module for the fieldwork, where each pond requires 3 to 4 operators for 1 to 1.5 hours. An UAV hanging a cellphone and a micro-sonar is designed to measure water depth over water surface. Another UAV is dispatched for aerial photography to build surface terrain around the ponds with a few control points. Finally, the slope and dyke height around the pond are measured for generating the pond DEM. Pond bottom elevation is modeled by the Inverse Distance Weighting of point measurements, and combined with slope and dyke height. The surface model is constructed using the stereo pairs of aerial images and control points. Finally, an integrated model obtained by combining both models is used to derive water storage. The correlation coefficients of water area and storage between our approach and data from the Department of Water Resources, Taoyuan (TYWR) achieve 0.99 and 0.84, respectively. Next, the Simplified Inundation Model (SPM) is used to simulate the flood extent in Bade District, Taoyuan, assuming the ponds are emptied in advance for stormwater detention purposes. Three scenarios were designed to discuss the efficiency of detention rate. Finally, the benefits of pond system and the importance of volume update are described.
關鍵字(中) ★ 移動測繪
★ 無人機
★ 聲納
★ 簡易淹水模式
關鍵字(英) ★ Mobile Mapping
★ Unmanned Aerial Vehicle
★ Sonar
★ Simplified Inundation Model
論文目次 摘要     i
ABSTRACT ii
誌謝      iv
1. Introduction and Motivation 1
1.1. Ponds in Taoyuan 1
1.2. Studies of Ponds 3
2. Methods for Measuring Waterbodies 5
2.1. Importance of Bathymetry Mapping 5
2.2. Optical Sounding in Bathymetry Mapping 5
2.2.1.Active Optical Sounding 5
2.2.2.Passive Optical Sounding 7
2.3. Acoustic Methods in Bathymetry Mapping 8
2.4. Novel Bathymetry Mapping 10
3. Methodology 12
3.1. Work Flow 12
3.2. Mobile Bathymetry System 13
3.2.1.Bathymetric Surveying Module 13
3.2.2.Calibration of Sonar 15
3.3. Measurement Procedure 16
3.4. Surface DEM Construction 22
3.4.1.Control Points Solution 22
3.4.2.Modeling Software and Parameter 24
3.5. Pond DEM 25
3.5.1.Water Depth Extraction and Spatial Fitting 25
3.5.2.Quantification of Water Volume 28
4. Result of Bathymetry 30
4.1. Integrated DEM 30
4.1.1.Pond DEM of BD089 and BD090 31
4.1.2.Pond DEM of YM187 32
4.2. Comparison with TYWR Dataset 34
5. Discussion 42
6. Pond as Stormwater Detention Facility 45
6.1. Flood Simulation 45
6.2. Diversion of Flooded Water to Ponds 47
6.3. Efficiency of Water Detention 48
6.4. Future Extension of Pond Database 52
7. Conclusion 54
Reference 56
Appendix 62
參考文獻 Agriculture, forestry, fishery and animal husbandry of 2002. (2002) [Data file]. Taoyuan: Statistics Section in Department of Budget, Accounting and Statics. (in Chinese)
Agriculture, forestry, fishery and animal husbandry of 2018. (2018) [Data file]. Taoyuan: Statistics Section in Department of Budget, Accounting and Statics. (in Chinese)
Alvarez, L. V., Moreno, H. A., Segales, A. R., Pham, T. G., Pillar-Little, E. A., & Chilson, P. B. (2018). Merging unmanned aerial systems (UAS) imagery and echo soundings with an adaptive sampling technique for bathymetric surveys. Remote Sensing, 10(9), 1362.
Amiri-Simkooei, A. R., Snellen, M., & Simons, D. G. (2011). Principal component analysis of single-beam echo-sounder signal features for seafloor classification. IEEE Journal of Oceanic Engineering, 36(2), 259-272.
Bandini, F., Olesen, D. H., Jakobsen, J., Kittel, C. M. M., Wang, S., Garcia, M., & Bauer-Gottwein, P. (2018). Bathymetry observations of inland water bodies using a tethered single-beam sonar controlled by an unmanned aerial vehicle. Hydrology and Earth System Sciences, 22(8), 4165-4181.
Chen, F. H. (1979). The development of irrigation and the change of spatial organization in Tao-Yuan tableland. Journal of Geographical Research. (in Chinese)
Cheng, W. M., Wei, C. C., & Hsu, N. S. (2013). Identification of key ponds for enlargement in a pond irrigation system. Journal of Taiwan Agricultural Engineering, 58(3), 50-63. (in Chinese)
Costa, B. M., Battista, T. A., & Pittman, S. J. (2009). Comparative evaluation of airborne LiDAR and ship-based multibeam SoNAR bathymetry and intensity for mapping coral reef ecosystems. Remote Sensing of Environment, 113(5), 1082-1100.
Chou, P. C. (2006). Promoting agriculture water efficiency in pond irrigation system. Master Thesis, National Central University. (in Chinese)
Deng, Y. Y. (2010). A study on water quality of Taoyuan tableland. Master Thesis, National Taiwan Normal University. (in Chinese)
Doong, D. J., Lo, W., Vojinovic, Z., Lee, W. L., & Lee, S. P. (2016). Development of a new generation of flood inundation maps—A case study of the coastal city of Tainan, Taiwan. Water, 8(11), 521.
Fang, W. T., & Huang, Y. W. (2012). Modelling geographic information system with logistic regression in irrigation ponds, Taoyuan Tableland. Procedia Environmental Sciences, 12, 505-513.
Fang, W. T. (2015). A digital modeling for best management practice at pondscape scales in Taoyuan. Journal of Wetlands, 4(1), 43-56.(in Chinese)
Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L., & Carbonneau, P. E. (2013). Topographic structure from motion: a new development in photogrammetric measurement. Earth surface processes and Landforms, 38(4), 421-430.
Fu, B. Y. (2009). Irrigation and State: A Study on the Administration of Public Canal System in Taoyuan during Japanese Colonial Period. Bulletin of Academia Historica, (20), 3-38. (in Chinese)
Getirana, A., Jung, H. C., & Tseng, K. H. (2018). Deriving three dimensional reservoir bathymetry from multi-satellite datasets. Remote sensing of environment, 217, 366-374.
Goff, J. A., Olson, H. C., & Duncan, C. S. (2000). Correlation of side-scan backscatter intensity with grain-size distribution of shelf sediments, New Jersey margin. Geo-Marine Letters, 20(1), 43-49.
Hajji, W., & Tso, F. P. (2016). Understanding the performance of low power Raspberry Pi Cloud for big data. Electronics, 5(2), 29.
Hilldale, R. C., & Raff, D. (2008). Assessing the ability of airborne LiDAR to map river bathymetry. Earth Surface Processes and Landforms, 33(5), 773-783.
Hovem, J. M. (2007). Underwater acoustics: Propagation, devices and systems. Journal of Electroceramics, 19(4), 339-347.
Hung, Y.C., Wan, H.H., Tsai, P.Y., Liao, W.T., & Tseng, K.H. (2019). Using UAV with Low-cost Sonar to Measure Parameters of Ponds. Journal of Photogrammetry and Remote Sensing, 24(2), 135-146. (in Chinese)
Hwang, C. C., Wu, Y. T., & Ku, C. M. (2009). A study regarding legal system of water pond management. Journal of Hsing Kuo University of Management, (10), 1-22. (in Chinese)
Ishiguro, S., Yamada, K., Yamakita, T., Yamano, H., Oguma, H., & Matsunaga, T. (2016). Classification of seagrass beds by coupling airborne LiDAR bathymetry data and digital aerial photographs. In Aquatic Biodiversity Conservation and Ecosystem Services (pp. 59-70). Springer, Singapore.
Javernick, L., Brasington, J., & Caruso, B. (2014). Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry. Geomorphology, 213, 166-182.
Langley, R. B. (1995). NMEA 0183: A GPS receiver interface standard. GPS world, 6(7), 54-57.
Li, Y., Jin, M., & Wang, Y. (2010). Underwater digital elevation model validation and accuracy assessment. In 2010 Second IITA International Conference on geoscience and remote sensing (Vol. 2, pp. 302-305). IEEE.
Liu, P., Chen, A. Y., Huang, Y. N., Han, J. Y., Lai, J. S., Kang, S. C., ... & Tsai, M. H. (2014). A review of rotorcraft unmanned aerial vehicle (UAV) developments and applications in civil engineering. Smart Struct. Syst, 13(6), 1065-1094.
Lu, G. Y., & Wong, D. W. (2008). An adaptive inverse-distance weighting spatial interpolation technique. Computers & geosciences, 34(9), 1044-1055.
Lurton, X. (2002). An introduction to underwater acoustics: principles and applications. Springer Science & Business Media.
Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied geomatics, 6(1), 1-15.
National Marine Electronics Association. (2002). NMEA 0183--Standard for interfacing marine electronic devices. NMEA.
Shyue, S.W., Shih, T.Y., and Hsu, C.Y., 2012. An investigation toward sounding method and theory, Journal of Photogrammetry and Remote Sensing, 16(3): 203-217. (in Chinese)
Skarlatos, D., Procopiou, E., Stavrou, G., & Gregoriou, M. (2013, August). Accuracy assessment of minimum control points for UAV photography and georeferencing. In First international conference on remote sensing and geoinformation of the environment (RSCy2013) (Vol. 8795, p. 879514). International Society for Optics and Photonics.
Stumpf, R. P., Holderied, K., & Sinclair, M. (2003). Determination of water depth with high‐resolution satellite imagery over variable bottom types. Limnology and Oceanography, 48(1part2), 547-556.
Takasu, T., & Yasuda, A. (2009, November). Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In International symposium on GPS/GNSS (pp. 4-6). International Convention Center Jeju Korea.
Vanderkimpen, P., Melger, E., & Peeters, P. (2008). Flood modeling for risk evaluation: a MIKE FLOOD vs. SOBEK 1D2D benchmark study.
Walker, J. P., & Willgoose, G. R. (1999). On the effect of digital elevation model accuracy on hydrology and geomorphology. Water Resources Research, 35(7), 2259-2268.
Wang, C. K., & Philpot, W. D. (2007). Using airborne bathymetric lidar to detect bottom type variation in shallow waters. Remote Sensing of Environment, 106(1), 123-135.
Wang, J. J., & Chang, S. S. (2016). Detention Analysis of Farm Pond and Ditch Network in Taoyuan City. Journal of City and Planning, 43(2), 157-187. (in Chinese)
Ware, C., Knight, W., & Wells, D. (1991). Memory intensive statistical algorithms for multibeam bathymetric data. Computers & Geosciences, 17(7), 985-993.
Wu yu, Q. X. (2019, 07 02). The rain bursted! The flood depth reached 40 cm and railway didn′t work because the flooding was higher than pathway. Sanlih E-Television News. Retrieved from https://www.setn.com/News.aspx?NewsID=563927. (in Chinese)
Xie, W. X. (2019, 08 21). Xipo Pond Ecological Park has been in operation for 2 years with good flood detention function. Liberty Times Net. Retrieved from https://news.ltn.com.tw/news/life/breakingnews/2891806. (in Chinese).
Yang, T. H., Chen, Y. C., Chang, Y. C., Yang, S. C., & Ho, J. Y. (2015). Comparison of different grid cell ordering approaches in a simplified inundation model. Water, 7(2), 438-454.
Zheng, S. T. (2019, 06 25). It rained heavily in afternoon in Taoyuan, and serval road sections in Bade were flooded. Liberty Times Net. Retrieved from https://news.ltn.com.tw/news/life/breakingnews/2833370. (in Chinese).
Zhitkovskii, Y. Y. (1987). The sea bottom backscattering of sound (the history and modern state). In Progress in Underwater Acoustics (pp. 15-23). Springer, Boston, MA.
指導教授 曾國欣(Kuo-Hsin Tseng) 審核日期 2020-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明