博碩士論文 107322101 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.190.217.122
姓名 蔡欣諺(Hsin-Yen Tsai)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 不同半徑比和搜尋週期對最強地震圓弧雙交叉 的強震預測效能之影響
(The influence of different radius ratios and search periods on the strong earthquake prediction performance of the strongest double intersections of circular arcs of earthquakes)
相關論文
★ 各種載重作用下neo-Hookean材料微孔動態分析★ 劉氏保群算法於高雷諾數Burgers方程之應用及探討
★ 彈性材料圓孔非對稱變形近似解研究★ HAF描述含圓孔橡膠材料三軸壓縮變形的誤差分析
★ 國立中央大學-HAF描述圓形微孔非對稱變形的誤差計算★ 多微孔橡膠材料受拉變形平面應力分析
★ 非線性彈性固體微孔變形特性★ 鋼絲網加勁高韌性纖維混凝土於RC梁構件剪力補強研究
★ 高韌性纖維混凝土(ECC)之材料配比及添加物對收縮及力學性質影響★ 材料組成比例對超高性能纖維混凝土之工作性與力學性質之影響
★ 搜尋週期為四年時使用SDICAE作強震預測的最佳精度設定★ 牛頓型疊代法二次項效應
★ GEH理論壓密量速算式★ 擴散管流量解析解
★ 宏觀收斂迭代法速度比較★ 二次項效應混合型牛頓疊代法之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-9-18以後開放)
摘要(中) 本研究運用李顯智博士提出的「最強地震圓弧雙交叉」的概念來進行強震之預測分析。本研究從台灣中央氣象局地震資料庫擷取地震目錄,分析從1986年到2016年間發生之地震並搜尋出最強地震圓弧雙交叉。
透過對最強地震圓弧交叉的不同搜尋週期dy、徑向誤差TOLRe和弧向誤差TOLde三大參數做調整,得出不同參數組合下的結果,再加入半徑比因素統計整理並進行數據分析後,便可得出各自的預測機率,再綜合以上的數據及分析來比較不同參數對於預測準確度的影響。
最後發現在保留半徑比小於1.7的雙凸交叉,其70天內的強震命中率都能達到接近60%或更高,而半徑比小於1.7的凹凸交叉,其70天內的強震命中率都在50%或略低。
摘要(英) We make use of the concept of the strongest double intersection of circular arcs of earthquakes proposed by Hin-Chi Lei to predict strong earthquake.
The earthquake records from 1986 to 2016 taken from the Central Weather Bureau of Taiwan are studied. The search period of the intersections dy , the radial precision parameter TOLRe and the circumferential precision parameter TOLde are assigned to different values in order to test the efficiency of the prediction by our theory. In addition, the radius ratio is also taken into account in our analysis.
We found that the hit rate of the prediction of the strong earthquake within 70 days can reach 60% or even higher for the strongest double convex intersections of the circular arcs of earthquakes with radius ratio smaller than 1.7 if the parameter dy is smaller than 6. For the concave convex intersections with radius ratio smaller than 1.7 the hit rate of the prediction is a bit lower than or equal to 50% if dy is smaller than 6.
關鍵字(中) ★ 最強地震圓弧雙交叉 關鍵字(英) ★ the strongest double intersection of circular arcs of earthquakes
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 x
表目錄 xvi
符號說明 xxiii
第一章、緒論 1
1-1 研究動機 1
1-2 研究目的與文獻回顧 1
第二章、研究方法與內容 3
2-1 地震目錄 3
2-2 地震圓弧介紹 4
2-3 地震圓弧定義 4
2-4 地震圓弧之交叉型態 6
2-5 研究範圍 7
2-6 最強地震圓弧概念及步驟 7
第三章、研究實際案例分析 8
3-1 在dy為1下,不同TOLde和TOLRe的組合所得到之結果 8
3-1-1 TOLde = 0.09, TOLRe = 0.012 8
3-1-2 TOLde = 0.09, TOLRe = 0.014 9
3-1-3 TOLde = 0.09, TOLRe = 0.016 9
3-1-4 TOLde = 0.11, TOLRe = 0.012 9
3-1-5 TOLde = 0.11, TOLRe = 0.014 9
3-1-6 TOLde = 0.11, TOLRe = 0.016 10
3-1-7 TOLde = 0.13, TOLRe = 0.012 10
3-1-8 TOLde = 0.13, TOLRe = 0.014 10
3-1-9 TOLde = 0.13, TOLRe = 0.016 10
3-1-10 TOLde = 0.15, TOLRe = 0.012 11
3-1-11 TOLde = 0.15, TOLRe = 0.014 11
3-1-12 TOLde = 0.15, TOLRe = 0.016 11
3-2 在dy為2下,不同TOLde和TOLRe的組合所得到之結果 12
3-2-1 TOLde = 0.09, TOLRe = 0.012 12
3-2-2 TOLde = 0.09, TOLRe = 0.014 12
3-2-3 TOLde = 0.09, TOLRe = 0.016 13
3-2-4 TOLde = 0.11, TOLRe = 0.012 13
3-2-5 TOLde = 0.11, TOLRe = 0.014 14
3-2-6 TOLde = 0.11, TOLRe = 0.016 14
3-2-7 TOLde = 0.13, TOLRe = 0.012 15
3-2-8 TOLde = 0.13, TOLRe = 0.014 15
3-2-9 TOLde = 0.13, TOLRe = 0.016 15
3-2-10 TOLde = 0.15, TOLRe = 0.012 16
3-2-11 TOLde = 0.15, TOLRe = 0.014 16
3-2-12 TOLde = 0.15, TOLRe = 0.016 17
3-3 在dy為3下,不同TOLde和TOLRe的組合所得到之結果 18
3-3-1 TOLde = 0.09, TOLRe = 0.012 18
3-3-2 TOLde = 0.09, TOLRe = 0.014 19
3-3-3 TOLde = 0.09, TOLRe = 0.016 20
3-3-4 TOLde = 0.11, TOLRe = 0.012 21
3-3-5 TOLde = 0.11, TOLRe = 0.014 22
3-3-6 TOLde = 0.11, TOLRe = 0.016 22
3-3-7 TOLde = 0.13, TOLRe = 0.012 23
3-3-8 TOLde = 0.13, TOLRe = 0.014 24
3-3-9 TOLde = 0.13, TOLRe = 0.016 25
3-3-10 TOLde = 0.15, TOLRe = 0.012 26
3-3-11 TOLde = 0.15, TOLRe = 0.014 27
3-3-12 TOLde = 0.15, TOLRe = 0.016 28
3-4 在dy為4下,不同TOLde和TOLRe的組合所得到之結果 29
3-4-1 TOLde = 0.09, TOLRe = 0.012 29
3-4-2 TOLde = 0.09, TOLRe = 0.014 30
3-4-3 TOLde = 0.09, TOLRe = 0.016 31
3-4-4 TOLde = 0.11, TOLRe = 0.012 32
3-4-5 TOLde = 0.11, TOLRe = 0.014 32
3-4-6 TOLde = 0.11, TOLRe = 0.016 33
3-4-7 TOLde = 0.13, TOLRe = 0.012 34
3-4-8 TOLde = 0.13, TOLRe = 0.014 35
3-4-9 TOLde = 0.13, TOLRe = 0.016 36
3-4-10 TOLde = 0.15, TOLRe = 0.012 37
3-4-11 TOLde = 0.15, TOLRe = 0.014 38
3-4-12 TOLde = 0.15, TOLRe = 0.016 38
3-5 在dy為5下,不同TOLde和TOLRe的組合所得到之結果 39
3-5-1 TOLde = 0.09, TOLRe = 0.012 39
3-5-2 TOLde = 0.09, TOLRe = 0.014 40
3-5-3 TOLde = 0.09, TOLRe = 0.016 41
3-5-4 TOLde = 0.11, TOLRe = 0.012 42
3-5-5 TOLde = 0.11, TOLRe = 0.014 43
3-5-6 TOLde = 0.11, TOLRe = 0.016 44
3-5-7 TOLde = 0.13, TOLRe = 0.012 44
3-5-8 TOLde = 0.13, TOLRe = 0.014 45
3-5-9 TOLde = 0.13, TOLRe = 0.016 46
3-5-10 TOLde = 0.15, TOLRe = 0.012 46
3-5-11 TOLde = 0.15, TOLRe = 0.014 47
3-5-12 TOLde = 0.15, TOLRe = 0.016 47
3-6 在dy為6下,不同TOLde和TOLRe的組合所得到之結果 48
3-6-1 TOLde = 0.09, TOLRe = 0.012 48
3-6-2 TOLde = 0.09, TOLRe = 0.014 48
3-6-3 TOLde = 0.09, TOLRe = 0.016 49
3-6-4 TOLde = 0.11, TOLRe = 0.012 49
3-6-5 TOLde = 0.11, TOLRe = 0.014 49
3-6-6 TOLde = 0.11, TOLRe = 0.016 50
3-6-7 TOLde = 0.13, TOLRe = 0.012 50
3-6-8 TOLde = 0.13, TOLRe = 0.014 51
3-6-9 TOLde = 0.13, TOLRe = 0.016 51
3-6-10 TOLde = 0.15, TOLRe = 0.012 52
3-6-11 TOLde = 0.15, TOLRe = 0.014 52
3-6-12 TOLde = 0.15, TOLRe = 0.016 53
第四章、研究案例統計 54
4-1 在不同搜尋週期下的強震機率統計 54
4-1-1 dy=1 70天內、35天內發生強震機率 54
4-1-2 dy=2 70天內、35天內發生強震機率 56
4-1-3 dy=3 70天內、35天內發生強震機率 58
4-1-4 dy=4 70天內、35天內發生強震機率 60
4-1-5 dy=5 70天內、35天內發生強震機率 62
4-1-6 dy=6 70天內、35天內發生強震機率 64
4-2 在不同搜尋週期下加入半徑比的強震機率統計 66
4-2-1 dy=1 70天內、35天內發生強震機率 66
4-2-2 dy=2 70天內、35天內發生強震機率 68
4-2-3 dy=3 70天內、35天內發生強震機率 70
4-2-4 dy=4 70天內、35天內發生強震機率 72
4-2-5 dy=5 70天內、35天內發生強震機率 74
4-2-6 dy=6 70天內、35天內發生強震機率 76
4-3 針對dy=3,4,5的綜合命中率統計 78
第五章、研究案例統計說明 79
5-1 最強地震圓弧交叉重複 81
5-2 各個最強地震圓弧雙交叉之半徑比統計 85
5-2-1 所有相異交叉統計 85
5-2-2 各個搜尋週期下的相異交叉分析 101
5-2-3 各個搜尋週期半徑比及dt之關聯 137
第六章、結論 148
第七章、參考文獻 150
附錄、案例圖示 152
參考文獻 [1] H.C.Lei and C.W.Tang, “Circular Arcs and Curvilinear Distributions of Events of Earthquakes in Taiwan,” The Thirteenth National Conference on Structural Engineering,The Third Nationa Conference on Earthquake Engineering,Taiwan, 2016.
[2] H.C.Lei, “Circles,Circular Arcs and Lines of Earthquakes Around Taiwan,” The 40th National Conference on Theoretical and Applied Mechanics,Taiwan, 2016.
[3] H.C.Lei, “Circles,Circular Arcs and Lines of Earthquakes Around Taiwan (II):Magnitude and Time, ” The 15th Conference on Land Studies,Tainan,Taiwan, 2017.
[4] H.C.Lei, “Some Idears for Constructing Significant Intersections of Circular Arcs of Earthquake,” Taiwan-Japan Joint Symposium on the Advancement of Urban Earthquake Hazard Mitigation Technology,Taoyuan,Taiwan, 2017.
[5] H.C.Lei, “Strongest Double Intersections of Circular Arcs of Earthquakes around Taiwan,” The 23rd Forum on Land Use and Planning,Tainan,Taiwan, 2019.
[6] H.C.Lei, “Prediction of Strong Earthquakes around Taiwan by Intersection Point of SDCICAE Close to Evmax, ” The 2019 Taiwan-
Japan Joint Symposium on the Advancement of Urban Earthquake
Hazard Mitigation Technology,Taoyuan,Taiwan, 2019
[7] H.C.Lei, “ASICAE by HinChi Lei to find the strongest intersections of circular arcs of earthquakes,” 2019. [線上].
Available: https://youtu.be/tvgYLpoH9T4.
[8] “ 中 央 氣 象 局 地 震 測 報 中 心 , ” [ 線 上 ]. Available: https://scweb.cwb.gov.tw/zh-tw/earthquake/data/.
[9] 簡子琦,「以強震發生等機率線和虛擬地震目錄驗證最強地震圓弧雙交叉理論在台灣地區的預測效率」,國立中央大學,2020.
[10] 李瑋育,「地震圓弧之精度對台灣地區最強地震圓弧雙交叉之影響」,國立中央大學,碩士論文,2019.
[11] 許祐銓,「短搜尋週期的極淺層最強地震圓弧雙交叉與後續台灣地區強震之關聯」,國立中央大學,碩士論文,2019.
[12] 范書源,「搜尋週期為三年半時使用SDICAE作強震預測的最佳精度設定」,國立中央大學,碩士論文,2020.
[13] 范國豪,「搜尋週期為四年時使用SDCICAE做強震預測的最佳精度設定」,國立中央大學,碩士論文,2020.
[14] 林亨學,「搜尋週期為三年時使用SDICAE做強震預測的最佳精度設定」,國立中央大學,碩士論文,2020.
指導教授 李顯智(Hin-Chi Lei) 審核日期 2022-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明