參考文獻 |
[1] 朱敬平, 化學迴圈燃燒技術發展概況簡介, 中興工程, (2011) 63-72.
[2] A.W. Jenike, Storage and flow of solids, Bulletin No. 123, The University of Utah, (1964).
[3] A.W. Jenike, Gravity Flow of Bulk Solids Bulletin No. 108, The University of Utah, (1961).
[4] U. Tüzün, R. Nedderman, An investigation of the flow boundary during steady-state discharge from a funnel-flow bunker, Powder Technol., 31 (1982) 27-43.
[5] B.H. Pittenger, H. Purutyan, R. Barnum, Reducing/eliminating segregation problems in powdered metal processing. ii. methods of controlling segregation, P/M Science & Technology Briefs, 2 (2000) 10-13.
[6] J.W. Carson, Preventing particle segregation: a review of the primary causes and some practical solutions can help, Chem. Eng., 111 (2004) 29-32.
[7] P. Tang, V. Puri, Methods for minimizing segregation: a review, Part. Sci. Technol., 22 (2004) 321-337.
[8] M. Ostendorf, J. Schwedes, Application of particle image velocimetry for velocity measurements during silo discharge, Powder Technol., 158 (2005) 69-75.
[9] S. Albaraki, S.J. Antony, How does internal angle of hoppers affect granular flow? Experimental studies using digital particle image velocimetry, Powder Technol., 268 (2014) 253-260.
[10] P.A. Cundall, O.D. Strack, A discrete numerical model for granular assemblies, geotechnique, 29 (1979) 47-65.
[11] H. Zhu, A. Yu, Steady-state granular flow in a 3D cylindrical hopper with flat bottom: macroscopic analysis, Granul. Matter, 7 (2005) 97-107.
[12] Y. Yu, H. Saxén, Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres, Adv. Powder Technol., 22 (2011) 324-331.
[13] V. Vidyapati, S. Subramaniam, Granular flow in silo discharge: discrete element method simulations and model assessment, Ind. Eng. Chem. Res., 52 (2013) 13171-13182.
[14] C.H. Rycroft, G.S. Grest, J.W. Landry, M.Z. Bazant, Analysis of granular flow in a pebble-bed nuclear reactor, Phys. Rev. E, 74 (2006) 021306.
[15] R. Balevičius, R. Kačianauskas, Z. Mroz, I. Sielamowicz, Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes, Adv. Powder Technol., 22 (2011) 226-235.
[16] C. González-Montellano, A. Ramirez, E. Gallego, F. Ayuga, Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silos, Chem. Eng. Sci., 66 (2011) 5116-5126.
[17] H. Tao, B. Jin, W. Zhong, X. Wang, B. Ren, Y. Zhang, R. Xiao, Discrete element method modeling of non-spherical granular flow in rectangular hopper, Chem. Eng. Process., 49 (2010) 151-158.
[18] M. Madrid, K. Asencio, D. Maza, Silo discharge of binary granular mixtures, Phys. Rev. E, 96 (2017) 022904.
[19] H. Zhu, A. Yu, Steady-state granular flow in a three-dimensional cylindrical hopper with flat bottom: microscopic analysis, J. Phys. D Appl. Phys., 37 (2004) 1497.
[20] R. Kobyłka, J. Horabik, M. Molenda, Numerical simulation of the dynamic response due to discharge initiation of the grain silo, Int. J. Solids Streuct., 106 (2017) 27-37.
[21] T. Weinhart, C. Labra, S. Luding, J.Y. Ooi, Influence of coarse-graining parameters on the analysis of DEM simulations of silo flow, Powder Technol., 293 (2016) 138-148.
[22] R. Balevičius, I. Sielamowicz, Z. Mróz, R. Kačianauskas, Effect of rolling friction on wall pressure, discharge velocity and outflow of granular material from a flat-bottomed bin, Particuology, 10 (2012) 672-682.
[23] C. González-Montellano, E. Gallego, Á. Ramírez-Gómez, F. Ayuga, Three dimensional discrete element models for simulating the filling and emptying of silos: analysis of numerical results, Comput. Chem. Eng., 40 (2012) 22-32.
[24] Q. Zheng, A. Yu, Finite element investigation of the flow and stress patterns in conical hopper during discharge, Chem. Eng. Sci., 129 (2015) 49-57.
[25] A. Couto, A. Ruiz, P. Aguado, Experimental study of the pressures exerted by wheat stored in slender cylindrical silos, varying the flow rate of material during discharge. Comparison with Eurocode 1 part 4, Powder Technol., 237 (2013) 450-467.
[26] S. Hsiau, J. Smid, C. Wang, J. Kuo, C. Chou, Velocity profiles of granules in moving bed filters, Chem. Eng. Sci., 54 (1999) 293-301.
[27] J. Haertl, J.Y. Ooi, J. Rotter, M. Wójcik, S. Ding, G.G. Enstad, The influence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo, Chem. Eng. Res. Des., 86 (2008) 370-378.
[28] M. Wójcik, J. Tejchman, G.G. Enstad, Confined granular flow in silos with inserts—Full-scale experiments, Powder Technol., 222 (2012) 15-36.
[29] M. Wójcik, J. Härtl, J.Y. Ooi, M. Rotter, S. Ding, G.G. Enstad, Experimental Investigation of the Flow Pattern and Wall Pressure Distribution in a Silo with a Double‐Cone Insert, Part. Part. Syst. Char., 24 (2007) 296-303.
[30] H. Hammadeh, F. Askifi, A. Ubysz, M. Maj, A. Zeno, Effect of using insert on the flow pressure in cylindrical silo, Studia Geotech. et Mech., 41 (2019) 177-183.
[31] S. Ding, A. Dyrøy, M. Karlsen, G. Enstad, M. Jecmenica, Experimental investigation of load exerted on a double-cone insert and effect of the insert on pressure along walls of a large-scale axisymmetrical silo, Part. Sci. Technol., 29 (2011) 127-138.
[32] S.C. Yang, S.S. Hsiau, The simulation and experimental study of granular materials discharged from a silo with the placement of inserts, Powder Technol., 120 (2001) 244-255.
[33] S. Ding, H. Li, J. Ooi, J. Rotter, Prediction of flow patterns during silo discharges using a finite element approach and its preliminary experimental verification, Particuology, 18 (2015) 42-49.
[34] J. Wu, J. Binbo, J. Chen, Y. Yang, Multi-scale study of particle flow in silos, Adv. Powder Technol., 20 (2009) 62-73.
[35] R. Kobyłka, M. Molenda, DEM simulations of loads on obstruction attached to the wall of a model grain silo and of flow disturbance around the obstruction, Powder Technol., 256 (2014) 210-216.
[36] R. Kobyłka, M. Molenda, J. Horabik, Loads on grain silo insert discs, cones, and cylinders: Experiment and DEM analysis, Powder Technol., 343 (2019) 521-532.
[37] J. Meriam, L. Kraige, Engineering Mechanics-Dinamics, John Wiley & Sons, New York, 2008.
[38] Y. Tsuji, T. Tanaka, T. Ishida, Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technol., 71 (1992) 239-250.
[39] C. Thornton, C. Randall, Applications of theoretical contact mechanics to solid particle system simulation, J. Appl. Mech., 20 (1988) 133-142.
[40] D. Zhang, W. Whiten, The calculation of contact forces between particles using spring and damping models, Powder Technol., 88 (1996) 59-64.
[41] C. O′Sullivan, J.D. Bray, Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme, Eng. Comput., 21 (2004) 278-303.
[42] D.O. Potyondy, P.A. Cundall, A bonded-particle model for rock, Int. J. Rock Mech. Min., 41 (2004) 1329-1364.
[43] J. Choi, A. Kudrolli, M.Z. Bazant, Velocity profile of granular flows inside silos and hoppers, J. Phys.: Condens. Matter, 17 (2005) S2533-S2548.
[44] A. Ramírez, J. Nielsen, F. Ayuga, Pressure measurements in steel silos with eccentric hoppers, Powder Technol., 201 (2010) 7-20.
[45] M. Martinez, I. Alfaro, M. Doblare, Simulation of axisymmetric discharging in metallic silos. Analysis of the induced pressure distribution and comparison with different standards, Eng. Struct., 24 (2002) 1561-1574.
[46] Y. Wang, Y. Lu, J.Y. Ooi, Finite element modelling of wall pressures in a cylindrical silo with conical hopper using an Arbitrary Lagrangian–Eulerian formulation, Powder Technol., 257 (2014) 181-190.
[47] C. Campbell, C. Brennen, Chute flows of granular material: some computer simulations, J. Appl. Mech. 52 (1985) 172-178.
[48] J. Wan, F. Wang, G. Yang, S. Zhang, M. Wang, P. Lin, L. Yang, The influence of orifice shape on the flow rate: A DEM and experimental research in 3D hopper granular flows, Powder Technol., 335 (2018) 147-155.
[49] Q. Zheng, B. Xia, R. Pan, A. Yu, Piping flow of cohesive granular materials in silo modelled by finite element method, Granul. Matter, 19 (2017) 2.
[50] S. Masson, J. Martinez, Effect of particle mechanical properties on silo flow and stresses from distinct element simulations, Powder Technol., 109 (2000) 164-178.
[51] S. Liu, Z. Zhou, R. Zou, D. Pinson, A. Yu, Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper, Powder Technol., 253 (2014) 70-79.
[52] Y. Chung, C. Lin, J. Ai, Mechanical behaviour of a granular solid and its contacting deformable structure under uni-axial compression-Part II: Multi-scale exploration of internal physical properties, Chem. Eng. Sci., 144 (2016) 421-443.
[53] J. Gray, M. Wieland, K. Hutter, Gravity-driven free surface flow of granular avalanches over complex basal topography, Proc. R. Soc. Lond. A, 455 (1999) 1841-1874.
[54] Y. Tai, J. Gray, K. Hutter, S. Noelle, Flow of dense avalanches past obstructions, Ann. Glaciol., 32 (2001) 281-284.
[55] J. Gray, Y.-C. Tai, S. Noelle, Shock waves, dead zones and particle-free regions in rapid granular free-surface flows, J. Fluid Mech., 491 (2003) 161-181.
[56] L.E. Silbert, D. Ertaş, G.S. Grest, T.C. Halsey, D. Levine, S.J. Plimpton, Granular flow down an inclined plane: Bagnold scaling and rheology, Phys. Rev. E, 64 (2001) 051302.
[57] T. Faug, Depth-averaged analytic solutions for free-surface granular flows impacting rigid walls down inclines, Phys. Rev. E, 92 (2015) 062310.
[58] Y. Chung, C. Wu, C. Kuo, S. Hsiau, A rapid granular chute avalanche impinging on a small fixed obstacle: DEM modeling, experimental validation and exploration of granular stress, Appl. Math. Model., 74 (2019) 540-568.
[59] T. Weinhart, R. Hartkamp, A.R. Thornton, S. Luding, Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface, Phys. Fluids, 25 (2013) 070605.
[60] L.S. Fan, Chemical looping systems for fossil energy conversions, John Wiley & Sons, Ltd, 2011 |