博碩士論文 107323027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.235.139.152
姓名 張竣傑(Jun-Jie Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超音波輔助磨削AGC玻璃加工之研究
(An investigation of ultrasonic assisted grinding on AGC glass)
相關論文
★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究★ 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究
★ 超音波輔助液中磨削鐵基金屬玻璃之研究★ 快速塑性成型(QPF)製程的精準度探討
★ 利用灰色關聯分析法探究線切割放電於SKD61加工之最佳化參數★ 超音波輔助微電化學鑽孔鎳基合金加工研究
★ Inconel 718 鎳基超合金異形電極微孔放電加工之研究★ 實驗分析研究應用於減低數據中心伺服器硬碟之結構傳遞振動
★ 超音波輔助電化學加工微孔陣列之研究★ 微放電結合電泳拋光於鐵基金屬玻璃微孔加工之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2022-9-1以後開放)
摘要(中) 本研究利用超音波輔助磨削AGC玻璃,進行一系列加工參數實驗,並探討各加工參數對加工品質特性之影響,本研究採用於磨削加工時,藉由超音波振動刀具之方式進行,探討各種磨削加工參數如超音波功率等級、進給速度、切削深度及主軸轉速等對於AGC玻璃之各種加工特性影響,加工品質特性包含表面粗糙度、加工深度與出口碎裂情形,希望獲得較小表面粗糙度與出口碎裂以及較精確之加工深度。另使用SEM、顯微影像量測儀及共軛焦雷射掃描顯微鏡進行試件表面微結構觀察,以及利用SEM及EDX分別進行加工後磨輪表面微結構觀察與成份分析。
實驗結果顯示,利用超音波輔助磨削加工玻璃時,超音波振動會使加工後之玻璃表面脆性破裂凹坑減少,並產生延性磨削痕跡,而根據參數實驗結果顯示,在超音波功率Level 2、進給速度50mm/min、切削深度0.005mm及主軸轉速8000rpm之參數組合下,可獲得最佳表面粗糙度Ra 0.548μm、較小之出口碎裂及較精確之加工深度。利用SEM進行加工後磨輪表面微結構觀察,可得知磨輪上的磨粒在加工時脫落,產生磨輪磨耗現象,另透過EDX元素成份分析,在加工後磨輪表面未發現有殘留加工之玻璃碎屑在其中。
摘要(英) In this study, ultrasonic-assisted grinding was applied on AGC glass to conduct a series of processing parameter experiments and to discuss the influence of various grinding parameters on machining quality characteristics. This research was carried out by ultrasonic vibration tools to grind the AGC glass. Various grinding processing parameters such as ultrasonic power level, feed rate, cutting depth and spindle speed on grinding AGC glass were discussed. Several machining characteristics, including surface roughness, processing depth and outlet chipping, were measured, observed discussed. The lower surface roughness, outlet chipping and more precise processing depth can expect to be obtained. In addition, the microstructure of the specimen surface was observed with SEM and confocal laser scanning microscope. The microstructure of the grinding wheel surface was also observed with SEM and EDX to analyze the composition after machining grinding processes.
The experimental results show that ultrasonic vibration can reduce brittle fracture surface pits and produce ductile grinding marks when conducting ultrasonic assisted grinding. The results also show that the best surface roughness Ra 0.548 μm, smaller outlet chipping and more precise processing depth can be obtained under ultrasonic power level 2, feed rate 50 mm/min, cutting depth 0.005 mm and spindle speed 8000 rpm. By means of the observation of the grinding wheel surface after grinding processes with SEM. The tool wear is due to abrasive particles of the grinding wheel fallen off during the process. In addition, no glass debris were found on the surface of the grinding wheel after machining grinding through EDX element composition analysis.
關鍵字(中) ★ 磨削
★ 超音波輔助
★ AGC玻璃
關鍵字(英) ★ Grinding
★ ultrasonic assist
★ AGC glass
論文目次 摘 要 II
ABSTRACT III
誌 謝 IV
目 錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機及目的 2
1-3 文獻回顧 3
1-4 論文架構 7
第二章 實驗基礎原理 8
2-1 磨削加工原理 8
2-1-1 磨削加工特色 8
2-1-2 磨削加工磨粒與材料移除機制 9
2-1-3 磨削加工中延性移除與脆性移除 11
2-1-4 脆性材料裂紋形成機制 12
2-1-5 磨削加工砂輪的磨耗 13
2-2 超音波加工原理 14
2-2-1 超音波加工基本原理 14
2-2-2 超音波輔助磨削加工 15
2-3 脆性材料的延性與脆性關係轉變 17
2-3-1 高靜壓力下脆性轉變延性 17
2-3-2 臨界切削深度延性轉變脆性 17
第三章 實驗設備與材料 18
3-1 實驗簡介 18
3-2 實驗設備 19
3-3 實驗材料 28
3-4 實驗流程與方法 33
第四章 結果與討論 36
4-1 超音波功率等級對磨削AGC玻璃加工之影響 36
4-2 進給速度對磨削AGC玻璃加工之影響 42
4-3 切削深度對磨削AGC玻璃加工之影響 47
4-4 主軸轉速對磨削AGC玻璃加工之影響 52
4-5 磨輪磨耗 57
4-6 磨輪表面EDX分析 59
4-7 加工表面3D輪廓形貌 60
第五章 結論 62
未來展望 64
參考文獻 65
參考文獻 [1]Wang, J., et al., “A model for prediction of subsurface damage in rotary ultrasonic face milling of optical K9 glass”. The International Journal of Advanced Manufacturing Technology, 2015. Vol.83(1-4), pp. 347-355.
[2]Kuo, K.-l. and C.-c. Tsao, “Rotary ultrasonic-assisted milling of brittle materials”. Transactions of Nonferrous Metals Society of China, 2012. Vol.22, pp. 793-800.
[3]楊忠義, 許富銓, 蕭美枝, 李正雄, 「超音波振動輔助加工於玻璃材料加工研究」, 工程科技與教育學刊, 2010.
[4]解文法, 精密研磨加工技術概說, 松露文化, 1980.
[5]Kalpakjian, and Schmid, Manufacturing engineering and technology., 7/E, Pearson, 2014.
[6]Marks, M.R., Hassan, Z. and Cheong, K.Y. “Characterization Methods for Ultrathin Wafer and Die Quality: A Review”. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014. Vol.4(12), pp. 2042-2057.
[7] Lawn, B. R., & Swain, M. V., “Microfracture beneath point indentations in brittle solids”. Journal of materials science, 1975. Vol.10(1), pp. 113-122.
[8]Toshiro Doi, Eckart Uhlmann, and Ioan D. Marinescu, Handbook of Ceramics Grinding and Polishing., 7th, William Andrew, 2014.
[9]Malkin, S., and Cook, N. H., “The wear of grinding wheels: part 1-attritious wear”, 1971., pp. 1120-1128.
[10]Lal, G. K., & Shaw, M. C., “On the attritious wear of abrasive grains”. Wear, 1973. Vol.25(2), pp. 255-269.
[11]Puerto, P., et al., “Evolution of Surface Roughness in Grinding and its Relationship with the Dressing Parameters and the Radial Wear”. Procedia Engineering, 2013. Vol.63, pp. 174-182.
[12]Wang, H., et al., “Surface grinding of carbon fiber-reinforced plastic composites using rotary ultrasonic machining: Effects of tool variables”. Advances in Mechanical Engineering, 2016. Vol.8(9), pp. 1-14.
[13]Bridgman, P.W. and Šimon, I. “Effects of Very High Pressures on Glass”. Journal of Applied Physics, 1953. Vol.24(4), pp. 405-413.
[14]Sajjadi, M., Malekian, M., Park, S. S., & Jun, M. B., “Investigation of micro scratching and machining of glass”. International Manufacturing Science and Engineering Conference, 2009. Vol.43628, pp. 401-408.
[15]Liu, K., et al., “A study of the cutting modes in the grooving of tungsten carbide”. The International Journal of Advanced Manufacturing Technology, 2004. Vol.24(5-6), pp. 321-326.
[16]蔡建南, 「玻璃螢幕面板高轉速加工之研究」, 逢甲大學材料與製造工程所, 碩士論文, 2009.
[17]Peng, Y., et al., “An experimental study of ultrasonic vibration-assisted grinding of polysilicon using two-dimensional vertical workpiece vibration”. The International Journal of Advanced Manufacturing Technology, 2010. Vol.54(9-12), pp. 941-947.
[18]Arif, M., Rahman, M. and Yoke San, W. “Analytical model to determine the critical feed per edge for ductile-brittle transition in milling process of brittle materials”. International Journal of Machine Tools and Manufacture, 2011. Vol.51(3), pp. 170-181.
[19]Gu, W., Yao, Z. and Li, H. “Investigation of grinding modes in horizontal surface grinding of optical glass BK7”. Journal of Materials Processing Technology, 2011. Vol.211(10), pp. 1629-1636.
[20]Arif, M., M. Rahman, and W.Y. San, “Ultraprecision ductile mode machining of glass by micro milling process”. Journal of Manufacturing Processes, 2011. Vol.13(1), pp. 50-59.
[21]Zhang, C., et al., “Rotary ultrasonic machining of optical K9 glass using compressed air as coolant: A feasibility study”. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2013. Vol.228(4), pp. 504-514.
[22]Lv, D., et al., “Influences of vibration on surface formation in rotary ultrasonic machining of glass BK7”. Precision Engineering, 2013. Vol.37(4), pp. 839-848.
[23]Wang, Y., et al., “Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing”. International Journal of Machine Tools and Manufacture, 2014. Vol.77, pp. 66-73.
[24]Jianhua, Z., et al., “Study on Effect of Ultrasonic Vibration on Grinding Force and Surface Quality in Ultrasonic Assisted Micro End Grinding of Silica Glass”. Shock and Vibration, 2014. Vol.2014, pp. 1-10.
[25]Jiang, C., Wang, C. and Li, H. “Experimental investigation of brittle material removal fraction on an optical glass surface during ultrasound-assisted grinding”. The International Journal of Advanced Manufacturing Technology, 2015. Vol.86(1-4), pp. 419-426.
[26]Singh, R.P. and Singhal, S. “Rotary Ultrasonic Machining: A Review”. Materials and Manufacturing Processes, 2016. Vol.31(14), pp. 1795-1824.
[27]Li, C., et al., “Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics”. Ceramics International, 2017. Vol.43(3), pp. 2981-2993.
[28]Hu, Y., Wang, H., Ning, F., Cong, W., & Li, Y., “Surface grinding of optical BK7/K9 glass using rotary ultrasonic machining: an experimental study”. International Manufacturing Science and Engineering Conference, 2017. Vol.50725, pp. V001T02A014.
[29]Song, X.-F., et al., “Ultrasonic assisted high rotational speed diamond machining of dental glass ceramics”. The International Journal of Advanced Manufacturing Technology, 2018. Vol.96(1-4), pp. 387-399.
[30]Dai, J., et al., “Finite element implementation of the tension-shear coupled fracture criterion for numerical simulations of brittle-ductile transition in silicon carbide ceramic grinding”. International Journal of Mechanical Sciences, 2018. Vol.146, pp. 211-220.
[31]Choong, Z.J., et al., “Micro-machinability and edge chipping mechanism studies on diamond micro-milling of monocrystalline silicon”. Journal of Manufacturing Processes, 2019. Vol.38, pp. 93-103.
[32]Baraheni, M. and Amini, S. “Predicting subsurface damage in silicon nitride ceramics subjected to rotary ultrasonic assisted face grinding”. Ceramics International, 2019. Vol.45(8), pp. 10086-10096.
[33]Abdo, B.M.A., Anwar, S. and El-Tamimi, A. “Machinability study of biolox forte ceramic by milling microchannels using rotary ultrasonic machining”. Journal of Manufacturing Processes, 2019. Vol.43, pp. 175-191.
[34]蔡明義, 林岳峰, 張嘉泰, 楊家豪, 「超音波振動輔助難削材加工之研究」, 機械新刊, 2019.
指導教授 崔海平(Hai-Ping Tsui) 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明