博碩士論文 107323034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:110 、訪客IP:3.239.76.211
姓名 周冠程(Guan-Cheng Zhou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工
(Surface Modifications and Double-sided Microlens Array Fabrication on Alkali-free Glass Using CW and Pulsed NIR Lasers)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極
★ 航太用鋁合金板熱處理爐設施之研究★ 雷射加工機應用於微米元件轉印製程之研究
★ 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析
★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究★ 雷射選擇圖案與無電鍍銅沉積應用於鋁矽酸玻璃基板之金屬化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究分別以近紅外光之連續式雷射及奈秒脈衝式雷射對無鹼玻璃進行結 構改質,運用近紅外光於玻璃高穿透度之特性,可於玻璃上下表面形成一對共軸 的改質區,由於雷射能量為高斯分布因此產生拱頂型的結構改質區,本文首先會 探討玻璃對近紅外波段能量的吸收機制及改質區形成機制,並以不同的雷射功率、 照射時間及脈衝頻率來觀察其對改質區結構的影響。在表面輪廓部分,本研究主 要探討的雷射能量區間為 30 W 至 50 W,可產生高度區間約為 100 nm 到25 μm 以及寬度區間20 μm 到 100 μm 之改質區,當雷射能量條件未能使玻璃達到玻璃 轉換溫度之上時,並無法產生結構改質區,當能量上升至適當範圍內,改質區高 度、寬度及體積機會隨著能量上升而增加,隨著能量在提升,改質區的寬度及體 積仍然呈現增加的趨勢但高度則呈現負成長,在能量強度過於極端的條件下,玻 璃會產生激烈的汽化反應而燒蝕。脈衝式雷射的部分,在相同的脈衝能量及脈衝 數量下,在雷射頻率較高時,具有較顯著的熱累積效應,可以獲得較大的改質區。並透過調整聚焦位置來改變改質區上下改質區的大小,結果顯示在負離焦的情況 下可以在下表面產生較大的改質區,並利用應力分析儀檢測改質區之應力分佈。本研究所產生之改質區表面粗糙度(Ra)可達 15 nm 以下,可達光學應用的規格,透過振鏡系統之定位可於玻璃基板上製作雙面微透鏡陣列,並以直徑 50 μm 的 微透鏡來探討其最佳化的陣列間距,在過小的間距,微透鏡在成形時會互相干擾 產生尺寸上的不平均,最後得到在微透鏡間距為 50 μm 時,尺寸差異之標準差可 以降至0.23,可產生均勻之陣列結構。
摘要(英) In this study, the structure modification on the alkali-free glass was carried out near-infrared continuous wave laser and nanosecond pulsed laser. Due to high transmittance of near-infrared light on the glass, a pair of coaxial modified zone were formed on the upper and lower surfaces of the glass. Because the laser energy is Gaussian distribution, a dome-shaped structural modification zone is produced. This article will first discuss the absorption mechanism of the glass to the near-infrared band energy and the formation mechanism of the modification zone. Different laser powers, irradiation time and pulse frequency were used to observe their influence on the structure of the modified zone. In the surface profile, the laser energy range that this study mainly discusses from 30 W to 50 W, which can produce a modified zone with a height range of about 100 nm to 25 μm and a width range of 20 μm to 100 μm. When the laser energy condition cannot make the glass to reach above the glass transition temperature, the structural modification zone cannot be produced. When the energy rises to an appropriate range, the height, width and volume of the modification zone increase with the increase of energy. As the energy increases, the width and volume of the modified zone still show an increasing trend, but the height shows a negative growth. Under conditions of excessive energy intensity, the glass will undergo a fierce vaporization reaction and ablation. For pulsed laser, under the same pulse energy and number of pulses, higher laser frequency has more significant heat accumulation effect and a larger modified area can be obtained. By adjusting the focusing position can change the size of the upper and lower modified areas, the results show that in the case of negative defocus, a larger modified area can be generated on the lower surface. Stress analyzer is used to detect the stress distribution of the modified area. The surface roughness (Ra) of the modified area produced in this research can reach 15 nm or less, which can reach the specifications for optical applications. Through the positioning of the galvanometer system, a double-sided microlens array can be made on a glass substrate. Microlens with a diameter of 50 μm was used to discuss the optimal array pitch. When the pitch is too small, the microlenses will interfere with each other and cause dimensional unevenness during forming proces. Finally, when the microlens pitch is 50 μm, the standard deviation of the size difference can be reduced to 0.23, a uniform array structure can be produced.
關鍵字(中) ★ 雷射改質
★ 雙面微透鏡陣列
關鍵字(英) ★ Laser modification
★ Double-sided microlens array
論文目次 中文摘要 v
Abstract vi
Content viii
List of Figures x
List of Tables xvi
Chapter 1 Introduction 1
1-1 Preface 1
1-2 Research background, purpose and methods 2
Chapter 2 Literature review 4
2-1 Laser glass modification 4
2-1-1 Carbon dioxide (CO2) laser glass modification 4
2-1-2 Carbon monoxide (CO) laser glass modification 8
2-1-3 Ultrashort pulse laser glass modification 10
2-2 Brief introduction and fabrication technologies of glass microlens array 12
2-2-1 Application of microlens array 12
2-2-2 Fabrication methods of glass microlens array 14
2-3 Laser-based method for MLAs fabrication 18
2-3-1 Laser direct writing methods 18
2-3-2 Hybrid methods 22
2-4 Motivation 24
Chapter 3 Experimental details 26
3-1 Experimental procedure 26
3-2 Experimental materials 26
3-3 Experimental details 27
3-3-1 Glass pre-cleaning 27
3-3-2 Experiment setup 27
3-3-3 Laser processing parameters 29
3-4 Charactering apparatus 29
Chapter 4 Results and Discussion 33
4-1 Mechanism of glass modification 33
4-1-1 Mechanism of formation of surface modification zone 33
4-1-2 NIR absorption of Glass 35
4-2 Topography of surface modification zone 38
4-2-1 Threshold of surface modification 38
4-2-2 Effect of laser power on surface morphology 39
4-2-3 Surface morphology of various laser irradiation time 45
4-2-4 Surface morphology of various repetition rates 53
4-2-5 Effects of defocusing on surface morphology 57
4-3 Forming process of surface modification zone 62
4-4 Analysis of strain distribution 64
4-5 Characteristics of surface modified zone 67
4-5-1 Uniformity of inner structure 67
4-5-2 Surface roughness 68
4-6 Fabrication of microlens array 71
4-6-1 Pitch limitation of MLA 71
4-6-2 Glass MLA as mold insert for replica molding 75
Chapter 5 Conclusion 78
Reference 80

參考文獻 [1] F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, "Manufacturing and measurement of freeform optics," CIRP Annals, vol. 62, no. 2, pp. 823-846, 2013/01/01/ 2013.
[2] D. Wu, C. An, M. H. Hong, W. Wang, Y. Peng, and Y. Lu, Grating fabrication with CW CO2 laser irradiation (Photonics Asia). SPIE, 2002.
[3] R. J. Winfield, B. Bhuian, S. O’Brien, and G. M. Crean, "Fabrication of grating structures by simultaneous multi-spot fs laser writing," Applied Surface Science, vol. 253, no. 19, pp. 8086-8090, 2007/07/31/ 2007.
[4] G. C. Firestone and A. Y. Yi, "Precision compression molding of glass microlenses and microlens arrays—an experimental study," Applied Optics, vol. 44, no. 29, pp. 6115-6122, 2005/10/10 2005.
[5] J. Yan, Z. Zhang, T. Kuriyagawa, and H. Gonda, "Fabricating micro-structured surface by using single-crystalline diamond endmill," The International Journal of Advanced Manufacturing Technology, vol. 51, pp. 957-964, 12/01 2010.
[6] G. Firestone, A. Jain, and A. Yi, "A Laboratory Apparatus for High Temperature Compression Molding of Precision Glass Optics," Review of Scientific Instruments, vol. 76, pp. 063101-063101, 05/17 2005.
[7] T. Knieling, M. Shafi, W. Lang, and W. Benecke, "Microlens array production in a microtechnological dry etch and reflow process for display applications," Journal of the European Optical Society - Rapid Publications vol 7 12007, 4 pages, vol. 7, p. 2007, 03/01 2012.
[8] S. Gorelick and A. De Marco, "Fabrication of glass microlenses using focused Xe beam," Optics Express, vol. 26, no. 10, pp. 13647-13655, 2018/05/14 2018.
[9] Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching," Optics Express, vol. 12, no. 10, pp. 2120-2129, 2004/05/17 2004.
[10] T. Izawa, N. Shibata, and A. Takeda, "Optical attenuation in pure and doped fused silica in the ir wavelength region," Applied Physics Letters, vol. 31, no. 1, pp. 33-35, 1977/07/01 1977.
[11] K. M. Du and P. Shi, "Subsurface precision machining of glass substrates by innovative lasers," Glass Science and Technology -Frankfurt am Main-, vol. 76, pp. 95-98, 03/01 2003.
[12] W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, "Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps," Applied Physics Letters, vol. 69, no. 21, pp. 3146-3148, 1996/11/18 1996.
[13] C. Buerhop, B. Blumenthal, R. Weissmann, N. Lutz, and S. Biermann, "Glass surface treatment with excimer and CO2 lasers," Applied Surface Science, vol. 46, no. 1, pp. 430-434, 1990/12/02/ 1990.
[14] T. D. Bennett, D. J. Krajnovich, L. Li, and D. Wan, "Mechanism of topography formation during CO2 laser texturing of silicate glasses," Journal of Applied Physics, vol. 84, no. 5, pp. 2897-2905, 1998/09/01 1998.
[15] D. Kuo, S. D. Vierk, O. Rauch, and D. Polensky, "Laser zone texturing on glass and glass-ceramic substrates," IEEE Transactions on Magnetics, vol. 33, no. 1, pp. 944-949, 1997.
[16] A. Q. Tool, "RELATION BETWEEN INELASTIC DEFORMABILITY AND THERMAL EXPANSION OF GLASS IN ITS ANNEALING RANGE*," Journal of the American Ceramic Society, vol. 29, no. 9, pp. 240-253, 1946/09/01 1946.
[17] T.-R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, "Mechanism of bump formation on glass substrates during laser texturing," Journal of Applied Physics, vol. 86, no. 3, pp. 1311-1316, 1999/08/01 1999.
[18] T. D. Bennett and L. Li, "Modeling laser texturing of silicate glass," Journal of Applied Physics, vol. 89, no. 2, pp. 942-950, 2001/01/15 2000.
[19] S. A. Alterovitz et al., "List of Contributors," in Handbook of Optical Constants of Solids, E. D. Palik, Ed. Boston: Academic Press, 1998, pp. xv-xviii.
[20] N. Kitamura, K. Fukumi, and J. Nishii, "Surface Modification of Densified Silica Glass by CO Laser Irradiation," Japanese Journal of Applied Physics, vol. 45, no. 3A, pp. 1725-1728, 2006/03/08 2006.
[21] J. J. P. ARNDT a D sTöEFLER and c. o. Glasses, "Anomalous changes in some properties of silica glass densified at very high pressures," vol. 10, no. 3, 1969.
[22] G. Y. Chen et al., "Femtosecond-laser-written Microstructured Waveguides in BK7 Glass," Scientific Reports, vol. 8, no. 1, p. 10377, 2018/07/10 2018.
[23] P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, "Femtosecond laser-pulse-induced birefringence in optically isotropic glass," Journal of Applied Physics, vol. 95, no. 10, pp. 5280-5283, 2004/05/15 2004.
[24] Z. Wang, K. Sugioka, and K. Midorikawa, "Three-dimensional integration of microoptical components buried inside photosensitive glass by femtosecond laser direct writing," Applied Physics A, vol. 89, no. 4, pp. 951-955, 2007/12/01 2007.
[25] L. Schlessinger and J. Wright, "Inverse-bremsstrahlung absorption rate in an intense laser field," Physical Review A, vol. 20, no. 5, pp. 1934-1945, 11/01/ 1979.
[26] S. M. Eaton et al., "Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate," Optics Express, vol. 13, no. 12, pp. 4708-4716, 2005/06/13 2005.
[27] M. Shimizu et al., "Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses," Journal of Applied Physics, vol. 108, no. 7, p. 073533, 2010/10/01 2010.
[28] D. J. Little et al., "Structural changes in BK7 glass upon exposure to femtosecond laser pulses," Journal of Raman Spectroscopy, vol. 42, no. 4, pp. 715-718, 2011/04/01 2011.
[29] A. Fuerbach et al., Refractive index change mechanisms in different glasses induced by femtosecond laser irradiation. 2016, p. 99830W.
[30] K. Rastani, C. Lin, and J. S. Patel, "Active-fiber star coupler that uses arrays of microlenses and liquid-crystal modulators," Applied Optics, vol. 31, no. 16, pp. 3046-3050, 1992/06/01 1992.
[31] Y. Motoyama, K. Sugiyama, H. Tanaka, H. Tsuchioka, K. Matsusaki, and H. Fukumoto, "High-efficiency OLED microdisplay with microlens array," Journal of the Society for Information Display, vol. 27, no. 6, pp. 354-360, 2019/06/01 2019.
[32] S. Eitel, S. J. Fancey, H. Gauggel, K. Gulden, W. Bachtold, and M. R. Taghizadeh, "Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays," IEEE Photonics Technology Letters, vol. 12, no. 5, pp. 459-461, 2000.
[33] L. Zhu, P. T. Lai, and H. W. Choi, "LED with integrated microlens array patterned by an ultraviolet linear micro-LED array," in 2010 Photonics Global Conference, 2010, pp. 1-3.
[34] Z. Wang, G. Zhu, Y. Huang, X. Zhu, and C. Zhu, "Analytical model of microlens array system homogenizer," Optics & Laser Technology, vol. 75, pp. 214-220, 2015/12/01/ 2015.
[35] D. Abookasis and J. Rosen, Microlens array help imaging hidden objects for medical applications. 2005, pp. 431-434.
[36] H. Ottevaere et al., "REVIEW ARTICLE: Comparing glass and plastic refractive microlenses fabricated with different technologies," Journal of Optics A: Pure and Applied Optics, vol. 8, 07/01 2006.
[37] J.-T. Wu and S.-Y. Yang, "A gasbag-roller-assisted UV imprinting technique for fabrication of a microlens array on a PMMA substrate," Journal of Micromechanics and Microengineering, vol. 20, no. 8, p. 085038, 2010/07/21 2010.
[38] R. Guo, D. Yuan, and S. Das, "Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation," Journal of Micromechanics and Microengineering, vol. 21, no. 1, p. 015010, 2010/12/21 2010.
[39] Y.-S. Cherng and G.-D. J. Su, "Fabrication of polydimethylsiloxane microlens array on spherical surface using multi-replication process," Journal of Micromechanics and Microengineering, vol. 24, no. 1, p. 015016, 2013/12/09 2013.
[40] X. Liu, L. Yu, Q. Chen, L. Cao, B. Bai, and H. Sun, "Sapphire Concave Microlens Arrays for High-Fluence Pulsed Laser Homogenization," IEEE Photonics Technology Letters, vol. 31, no. 20, pp. 1615-1618, 2019.
[41] Z. Deng et al., "Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining," Optics Letters, vol. 40, no. 9, pp. 1928-1931, 2015/05/01 2015.
[42] D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, "Microjet fabrication of microlens arrays," IEEE Photonics Technology Letters, vol. 6, no. 9, pp. 1112-1114, 1994.
[43] N. S. Ong, Y. H. Koh, and Y. Q. Fu, "Microlens array produced using hot embossing process," Microelectronic Engineering, vol. 60, no. 3, pp. 365-379, 2002/04/01/ 2002.
[44] C.-H. Tien, Y.-E. Chien, Y. Chiu, and H.-P. Shieh, "Microlens Array Fabricated by Excimer Laser Micromachining with Gray-tone Photolithography," Japanese Journal of Applied Physics, vol. 42, pp. 1280-1283, 03/15 2003.
[45] Y. Chen, A. Y. Yi, D. Yao, F. Klocke, and G. Pongs, "A reflow process for glass microlens array fabrication by use of precision compression molding," Journal of Micromechanics and Microengineering, vol. 18, no. 5, p. 055022, 2008/04/08 2008.
[46] S. Audran et al., "Study of dynamical formation and shape of microlenses formed by the reflow method," in Proc.SPIE, 2006, vol. 6153.
[47] W. Yuan, L.-H. Li, W.-B. Lee, and C.-Y. Chan, "Fabrication of Microlens Array and Its Application: A Review," Chinese Journal of Mechanical Engineering, vol. 31, no. 1, p. 16, 2018/02/27 2018.
[48] D.-N. Nguyen, "FEA and Experimentally Determination of Applied Elasticity Problem for Fabricating Aspheric Surfaces," 2018.
[49] C.-Y. Huang, W.-T. Hsiao, K.-C. Huang, K.-S. Chang, H.-Y. Chou, and C.-P. Chou, "Fabrication of a double-sided micro-lens array by a glass molding technique," Journal of Micromechanics and Microengineering, vol. 21, no. 8, p. 085020, 2011/07/12 2011.
[50] M. Wakaki, Y. Komachi, and G. Kanai, "Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser," Applied Optics, vol. 37, no. 4, pp. 627-631, 1998/02/01 1998.
[51] G. Daniel Nieto et al., "Laser-based microstructuring of surfaces using low-cost microlens arrays," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 11, no. 2, pp. 1-8, 6/1 2012.
[52] I.-B. Sohn, H.-K. Choi, Y.-C. Noh, J. Kim, and M. S. Ahsan, "Laser assisted fabrication of micro-lens array and characterization of their beam shaping property," Applied Surface Science, vol. 479, pp. 375-385, 2019/06/15/ 2019.
[53] J. G. Hua et al., "Convex silica microlens arrays via femtosecond laser writing," Opt Lett, vol. 45, no. 3, pp. 636-639, 2020.
[54] G. K. Kostyuk, R. A. Zakoldaev, M. M. Sergeev, and E. B. Yakovlev, Microlens array fabrication on fused silica influenced by NIR laser. 2016.
[55] S. M. Metev and V. P. Veiko, Laser-assisted microtechnology. Springer Science & Business Media, 2013.
[56] Y. Wei et al., "Fabrication of high integrated microlens arrays on a glass substrate for 3D micro-optical systems," Applied Surface Science, vol. 457, pp. 1202-1207, 2018/11/01/ 2018.
[57] C. Incorporated, "EAGLE XG® Slim Glass Product Information Sheet," Internet 2013. Corning Incorporated
[58] "Focusing of spherical Gaussian beams," Applied Optics, vol. 22, no. 5, pp. 658-661, 1983/03/01 1983.
[59] D. P. Hand and P. S. J. Russell, "Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse," Optics Letters, vol. 13, no. 9, pp. 767-769, 1988/09/01 1988.
[60] M. Yoshioka, H. Hidai, and H. Tokura, "CW-laser induced modification in glasses by laser backside irradiation (LBI)," in Proc.SPIE, 2006, vol. 6106.
[61] Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, "Evaluation of high-temperature absorption coefficients of optical fibers," IEEE Photonics Technology Letters, vol. 16, no. 4, pp. 1008-1010, 2004.
[62] Y. Shuto, "Evaluation of High-Temperature Absorption Coefficients of Ionized Gas Plasmas in Optical Fibers," IEEE Photonics Technology Letters, vol. 22, no. 3, pp. 134-136, 2010.
[63] I. Miyamoto, K. Cvecek, and M. Schmidt, "Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses," Optics express, vol. 19, pp. 10714-27, 05/23 2011.
[64] R. Yoshizaki et al., "Abrupt initiation of material removal by focusing continuous-wave fiber laser on glass," Applied Physics A, vol. 126, no. 9, p. 715, 2020/08/19 2020.
[65] W. Gao, S. Zhao, F. Liu, Y. Wang, C. Zhou, and X. Lin, "Effect of defocus manner on laser cladding of Fe-based alloy powder," Surface and Coatings Technology, vol. 248, pp. 54-62, 2014/06/15/ 2014.
[66] P. D Antonio, M. Lasalvia, G. Perna, and V. Capozzi, "Scale-independent roughness value of cell membranes studied by means of AFM technique," Biochimica et Biophysica Acta (BBA) - Biomembranes, vol. 1818, no. 12, pp. 3141-3148, 2012/12/01/ 2012.
[67] H. Liu et al., "Photoetching of spherical microlenses on glasses using a femtosecond laser," Optics Communications, vol. 282, no. 20, pp. 4119-4123, 2009/10/15/ 2009.
[68] H. L. Feng Chen, Qing Yang, Xianhua Wang, Cong Hou, Hao Bian, Weiwei Liang, Jinhai Si, and Xun Hou, "Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method," Optics Express, vol. 18, no. 19, pp. 20334-20343, 2010/09/13 2010.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2021-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明