博碩士論文 107323048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.236.122.9
姓名 郭耀仁(Yau-Reb Kuo)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 使用計算流體力學模擬小型風力機葉片旋轉效應
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-8-17以後開放)
摘要(中) 本論文旨在使用計算流體力學(Computational Fluid Dynamics, CFD)方法模擬旋轉效應對葉片的影響。有鑑於過去風機葉片氣動力負載計算以葉片元素動量理論(Blade Element Momentum, BEM)為主要方法,該方法須仰賴二維翼型的升力與阻力係數實驗數據,並以理論公式修正,以符合實際三維流場的影響。本研究使用商用軟體ANSYS Fluent,SST k-ω紊流模型,以移動座標方式(Moving Reference Frame, MRF)模擬計算風機葉片氣動力負載,結合計算流體力學流場可視化的優點,可直接解析三維流場現象,無需依賴實驗數據。分析的條件參考NREL Phase VI 風洞實驗,條件為3度節距角(pitch angle),7 m/s、10 m/s、13 m/s、15 m/s、20 m/s、25 m/s六種風速,模擬結果與實驗結果實施比對,並探討葉片的氣動力負載,分析項目包括推力、扭矩、葉片流線、壓力係數、推力係數、扭力係數、升力係數、阻力係數。結果顯示模擬的旋轉現象與理論相符,即翼根處有失速延遲(stall delay)的現象;在翼尖處有翼尖損失(tip loss)的現象。但由於模擬的升力係數較低,阻力係數較高,使得扭矩值平均小於實驗值約20%。此外,風速10 m/s至15 m/s,流場處於不穩定狀態,扭矩計算誤差最大可達28%。本文另以滑移網格(Sliding Mesh Method, SLM)實施暫態模擬,風速10 m/s的扭矩計算誤差可修正至7%。透過本次研究可得結論如後,使用計算流體力學方式可以模擬葉片三維旋轉效應,但是靠近葉片壁面的流場,如分離與迴流,仍然有誤差。
摘要(英) Nowadays the main approach to the aerodynamic loading calculation for wind turbines is BEM (Blade Element Momentum) method. However, it heavily relies on the experimental data of the lift and drag coefficients which need further modification to match the actual three-dimensional flow around a wind turbine. This paper presents a computational fluid dynamics simulation for the rotational effects on the wind turbine blade. Therefore, there is no need to collect the lift and drag data by experiments. A commercial software, ANSYS Fluent, with MRF (Moving Reference Frame) method is used to simulate the aerodynamic load under uniform wind conditions as to combine the advantages of CFD flow field visualization to further understand the three-dimensional flow phenomena. The analysis conditions refer to the NREL Phase VI wind tunnel experiments, considering the pitch angle 3o, upwind speeds from 7 m/s to 25 m/s with no yaw angle. Six wind speeds are compared with the experimental results and the aerodynamic loads of the blade are discussed. The analysis items include thrust, torque, streamline, pressure coefficient, thrust force coefficient, torque force coefficient, lift coefficient, and drag coefficient. The results show that there is a stall delay phenomenon at the inboard of the wing and a tip loss phenomenon at the wing tip. These phenomena are consistent with the theory. The simulated torque is less than the experimental value by about 20% on average because the simulated lift coefficient is lower while the drag coefficient is higher than their experimental counterpart. When the wind speed is between from 10 m/s to 15 m/s, the flow field is unstable, the relative error from calculated torque is up to 28%. Compared with the result from MRF method, the relative error of torque is reduced to 7% by using the sliding mesh method. It is concluded that the CFD method can simulate the 3-D effects on the blade, but it requires further research effort to reduce the errors for the separation and reverse flow near the blade surface.
關鍵字(中) ★ NREL Phase VI
★ 計算流體力學
★ 風機氣動力
關鍵字(英) ★ CFD
★ NREL Phase VI
★ Wind Turbine
★ Fluent
論文目次 中文摘要 i
Abstract ii
圖目錄 v
表目錄 vii
符號說明 viii
英文縮寫 viii
英文字母 viii
希臘字母 ix
上下標 ix
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 2
1.3研究目的 5
第二章 研究方法 7
2.1問題描述 7
2.1.1參考實驗系統 8
2.1.2基本假設 12
2.1.3葉片幾何模型 12
2.2統御方程式 14
2.3紊流模型 15
2.4二維S809翼型網格與計算域邊界設定 16
2.5三維流場網格建立與計算域邊界條件設定 20
2.6移動參考座標 29
2.7滑移網格 30
第三章 結果與討論 33
3.1二維S809翼型模擬結果 33
3.2風機葉片網格獨立性測試 35
3.3模擬結果 38
3.3.1扭矩與推力 39
3.3.2葉片背風面流線圖 41
3.3.3壓力係數 42
3.3.4推力與扭力係數 49
3.3.5升力與阻力係數 53
3.3.6流線 58
3.3.7三維旋轉影響 73
第四章 結論與未來展望 81
4.1結論 81
4.2未來展望 83
參考文獻 85
附錄 87
附錄1:鈍尾S809翼型座標 87
附錄2:葉片截面位置、大小與扭轉角度 88
參考文獻 1. Shourangiz-Haghighi, A., Haghnegahdar, M. A., Wang, L., Mussetta, M., Kolios, A. and Lander, M., 2019, "State of the art in the optimisation of wind turbine performance using CFD," Archives of Computational Methods in Engineering, pp. 1-19.
2. Khlaifat, N., Altaee, A., Zhou, J., Huang, Y. and Braytee, A., 2020, "Optimization of a Small Wind Turbine for a Rural Area: A Case Study of Deniliquin, New South Wales, Australia," Energies, 13(9), p. 2292.
3. Du, Z. and Selig, M., 1998, "A 3-D stall-delay model for horizontal axis wind turbine performance prediction," Proc. ASME Wind Energy Symposium, p. 21.
4. Hand, M., Simms, D., Fingersh, L., Jager, D., Cotrell, J., Schreck, S. and Larwood, S., 2001, "Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns," National Renewable Energy Lab., Golden, CO.(US).
5. Sørensen, N. N., Michelsen, J. and Schreck, S., 2002, "Navier–Stokes predictions of the NREL phase VI rotor in the NASA Ames 80 ft× 120 ft wind tunnel," Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 5(2‐3), pp. 151-169.
6. Simms, D., Schreck, S., Hand, M. and Fingersh, L. J., 2001, "NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: a comparison of predictions to measurements," National Renewable Energy Lab., Golden, CO (US).
7. Pape, A. L. and Lecanu, J., 2004, "3D Navier–Stokes computations of a stall‐regulated wind turbine," Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 7(4), pp. 309-324.
8. Van Rooij, R. and Arens, E., 2007, "Analysis of the experimental and computational flow characteristics with respect to the augmented lift phenomenon caused by blade rotation," Proc. Journal of Physics: Conference Series, IOP Publishing, p. 012021.
9. Potsdam, M. and Mavriplis, D., 2009, "Unstructured mesh CFD aerodynamic analysis of the NREL Phase VI rotor," Proc. 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, p. 1221.
10. Sagol, E., Reggio, M. and Ilinca, A., 2012, "Assessment of two-equation turbulence models and validation of the performance characteristics of an experimental wind turbine by CFD," ISRN Mechanical Engineering.
11. Lanzafame, R., Mauro, S. and Messina, M., 2013, "Wind turbine CFD modeling using a correlation-based transitional model," Renewable Energy, 52, pp. 31-39.
12. Zhou, N., Chen, J., Adams, D. E. and Fleeter, S., 2016, "Influence of inflow conditions on turbine loading and wake structures predicted by large eddy simulations using exact geometry," Wind Energy, 19(5), pp. 803-824.
13. Zhong, W., Tang, H., Wang, T. and Zhu, C., 2018, "Accurate RANS Simulation of Wind Turbine Stall by Turbulence Coefficient Calibration," Applied Sciences, 8(9), p. 1444.
14. 劉家源, 2019, "風機葉片氣動力的計算流體力學建模與模擬," 國立中央大學碩士 論文
15. Menter, F., 1993, "Zonal two equation kw turbulence models for aerodynamic flows," Proc. 23rd fluid dynamics, plasmadynamics, and lasers conference, p. 2906.
16. Tu, J., Yeoh, G. H. and Liu, C., 2018, Computational fluid dynamics: a practical approach, Butterworth-Heinemann.
17. ANSYS, 2011, "ANSYS FLUENT user’s guide," Canonsburg, PA.
18. Ramsay, R., Hoffman, M. and Gregorek, G., 1995, "Effects of grit roughness and pitch oscillations on the S809 airfoil," National Renewable Energy Lab., Golden, CO (US).
19. El Khchine, Y. and Sriti, M., 2017, "Boundary Layer and Amplified Grid Effects on Aerodynamic Performances of S809 Airfoil for Horizontal Axis Wind Turbine (HAWT)," J. Eng. Sci. Technol, 12(11), pp. 3011-3022.
20. Menegozzo, L., Dal Monte, A., Benini, E. and Benato, A., 2018, "Small wind turbines: A numerical study for aerodynamic performance assessment under gust conditions," Renewable energy, 121, pp. 123-132.
21. Moshfeghi, M., Song, Y. J. and Xie, Y. H., 2012, "Effects of near-wall grid spacing on SST-K-ω model using NREL Phase VI horizontal axis wind turbine," Journal of Wind Engineering and Industrial Aerodynamics, 107, pp. 94-105.
22. Aksenov, A., Ozturk, U., Yu, C., Byvaltsev, P., Soganci, S. and Tutkun, O., "A validation study using nrel phase VI experiments, Part I: Low computational resource scenario," Proc. 12 th European Conference on Turbomachinery Fluid dynamics & Thermodynamics, EUROPEAN TURBOMACHINERY SOCIETY.
23. Chapra, S. C., 2012, Applied numerical methods with MATLAB for engineers and scientists, New York: McGraw-Hill.
24. Jonkman, J. M., 2003, "Modeling of the UAE wind turbine for refinement of FAST_AD," National Renewable Energy Lab., Golden, CO (US).
25. Guntur, S. and Sørensen, N. N., 2014,"An evaluation of several methods of determining the local angle of attack on wind turbine blades," Proc. Journal of Physics: Conference Series, IOP Publishing, p. 012045.
26. Rahimi, H., Schepers, J., Shen, W. Z., García, N. R., Schneider, M., Micallef, D., Ferreira, C. S., Jost, E., Klein, L. and Herráez, I., 2018, "Evaluation of different methods for determining the angle of attack on wind turbine blades with CFD results under axial inflow conditions," Renewable Energy, 125, pp. 866-876.
27. Hansen, M. O., 2015, Aerodynamics of wind turbines, Routledge.
指導教授 鍾志昂(C.A. Chung) 審核日期 2020-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明