參考文獻 |
1. Ould Ely, T., D. Kamzabek, and D. Chakraborty, Batteries Safety: Recent Progress and Current Challenges. Frontiers in Energy Research, 2019. 7.
2. Nishi, Y., The Development of Lithium Ion Secondary Batteries. The Chemical Record, 2001. 1: p. 406-413.
3. Chen, S., Z. Gao, and T. Sun, Safety challenges and safety measures of Li‐ion batteries. Energy Science & Engineering, 2021. 9(9): p. 1647-1672.
4. Wen, J., Y. Yu, and C. Chen, A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions. Materials Express, 2012. 2(3): p. 197-212.
5. Abada, S., et al., Safety focused modeling of lithium-ion batteries: A review. Journal of Power Sources, 2016. 306: p. 178-192.
6. Conte, F.V., Battery and battery management for hybrid electric vehicles: a review. e & i Elektrotechnik und Informationstechnik, 2006. 123(10): p. 424-431.
7. Jeong, G., et al., Prospective materials and applications for Li secondary batteries. Energy & Environmental Science, 2011. 4(6).
8. Gerssen-Gondelach, S.J. and A.P.C. Faaij, Performance of batteries for electric vehicles on short and longer term. Journal of Power Sources, 2012. 212: p. 111-129.
9. Carey, N. and C. Steitz, EU proposes effective ban for new fossil-fuel cars from 2035, in Reuters. 2021.
10. Chen, T., et al., Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems. Transactions of Tianjin University, 2020. 26(3): p. 208-217.
11. Ke, Y.-K., Appication of Lithium-ion batteries in energy storage systems. Journal of Marine Science and Technology, 2019. 27(4).
12. Crabtree, G., E. Kócs, and L. Trahey, The energy-storage frontier: Lithium-ion batteries and beyond. MRS Bulletin, 2015. 40(12): p. 1067-1078.
13. Katz, C., In Boost for Renewables, Grid-Scale Battery Storage Is on the Rise, in Yale Environment 360. 2020: Yale University.
14. Kong, D., et al., Numerical investigation of thermal runaway behavior of lithium-ion batteries with different battery materials and heating conditions. Applied Thermal Engineering, 2021. 189.
15. Farhad, S. and A. Nazari, Introducing the energy efficiency map of lithium-ion batteries. International Journal of Energy Research, 2019. 43(2): p. 931-944.
16. Saw, L.H., et al., Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling. Applied Energy, 2016. 177: p. 783-792.
17. Fankai Meng, L.C., Zhihui Xie, Numerical simulations and analyses on thermal characteristics of 18650 lithium-ion batteries with natural cooling conditions. International Journal of Energy and Environment, 2017. 8(1): p. 43-50.
18. Kalkan, O., A. Celen, and K. Bakirci, Experimental and numerical investigation of the LiFePO4 battery cooling by natural convection. Journal of Energy Storage, 2021. 40.
19. Karimi, G. and X. Li, Thermal management of lithium-ion batteries for electric vehicles. International Journal of Energy Research, 2013. 37(1): p. 13-24.
20. Behi, H., et al., Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications. Energy, 2021. 224.
21. Wang, S., S. Ji, and Y. Zhu, A comparative study of cooling schemes for laminated lithium-ion batteries. Applied Thermal Engineering, 2021. 182.
22. Hong, J.S., et al., Electrochemical‐Calorimetric Studies of Lithium‐Ion Cells. Journal of The Electrochemical Society, 2019. 145(5): p. 1489-1501.
23. Onda, K., et al., Experimental Study on Heat Generation Behavior of Small Lithium-Ion Secondary Batteries. Journal of The Electrochemical Society, 2003. 150(3).
24. Lin, C., S. Xu, and J. Liu, Measurement of heat generation in a 40 Ah LiFePO4 prismatic battery using accelerating rate calorimetry. International Journal of Hydrogen Energy, 2018. 43(17): p. 8375-8384.
25. Liu, Y., et al., Numerical Analysis and Design of Thermal Management System for Lithium Ion Battery Pack Using Thermoelectric Coolers. Advances in Mechanical Engineering, 2015. 6.
26. Mills, A. and S. Al-Hallaj, Simulation of passive thermal management system for lithium-ion battery packs. Journal of Power Sources, 2005. 141(2): p. 307-315.
27. Zhang, X., et al., Evaluation of convective heat transfer coefficient and specific heat capacity of a lithium-ion battery using infrared camera and lumped capacitance method. Journal of Power Sources, 2019. 412: p. 552-558.
28. Thermal properties of metals, conductivity, thermal expansion, specific heat. Available from: https://www.engineersedge.com/properties_of_metals.htm.
29. Deng, D. and H. Murakawa, Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Computational Materials Science, 2006. 37(3): p. 269-277.
30. Mabrouki, T., et al., Numerical and experimental study of dry cutting for an aeronautic aluminium alloy (A2024-T351). International Journal of Machine Tools and Manufacture, 2008. 48(11): p. 1187-1197.
31. Liu, S., et al., Experimental and simulation study on thermal characteristics of 18,650 lithium–iron–phosphate battery with and without spot–welding tabs. Applied Thermal Engineering, 2020. 166.
32. Giorgini, D.D.G.A., The validity of the boussinesqi approximation for liquids and gases. International Journal Heat Mass Transfer, 1976. 19: p. 545-551.
33. A.J.Policastro, M.S., Effects of the Boussinesq Approximation on the Results of Strongly-Buoyant Plume Calculations, in American Meteorological Society. 1984.
34. Chen, H., et al., Thermal conductivity of polymer-based composites: Fundamentals and applications. Progress in Polymer Science, 2016. 59: p. 41-85.
35. Knowledge source on Materials Engineering. Available from: http://www.substech.com/dokuwiki/doku.php?id=thermoplastic_polypropylene_pp.
36. Thermal Properties of Plastic Materials. Available from: https://www.professionalplastics.com/professionalplastics/ThermalPropertiesofPlasticMaterials.pdf.
37. ValCrie Eveloy, P.R., John Lohan, Comparison of numerical predictions and experimental measurements for the thermal transient behavior of a board-mounted electronic component, in Inter Society Conference on Thermal Phenomenal 2002. p. 2. |