博碩士論文 107323057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.145.171.111
姓名 黃哲鈺(Che-Yu Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 雙壁旋轉鼓中不同軸向深度對二元混合物顆粒體運動型態之研究
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究係以探討當固定填充率後,因不同軸向深度及轉動速度,影響由顆粒尺寸差異所導致之分離現象,同時藉由單眼相機記錄下完整實驗過程,並以程式軟體量化實驗數據,得以科學方式探究其複雜之機制。
實驗結果顯示,在較小的軸向深度且不同轉速下,分離的現象會隨著轉動速度提高,而由正分離轉至混合態,最終達到逆分離;但當在較大的軸向深度時,分離的現象則會隨著轉動速度提高,而由正分離轉至雙分離,最終才會形成逆分離。且由顆粒濃度隨時間之變化,也可以發現在較小的深度與較大的深度之間會有所差異,前者,顆粒濃度變化較為輕微;而後者,則會有較劇烈的顆粒濃度變化,這兩者的差異更凸顯軸向深度對於本研究影響之重要性,而不同軸向深度,因填充率所形成的空隙空間並不相同,進而影響顆粒運動之空間,使得軸向深度與顆粒間的交互作用,在軸向深度達到一定之臨界值以內,會有著不可分割的關聯性。
同時利用分離指標數值將各種分離現象量化,最後藉由顆粒速度場之分析,觀察轉鼓內部之顆粒運動情形,同時將其扣除轉鼓速度,可以看出在相同轉動速度下,不同深度的轉鼓內顆粒運動情形類似;而在相同軸向深度下之不同轉動速度,則會在轉鼓右上角的顆粒崩塌區域有所不同,進而影響顆粒體在其中的速度分布。
摘要(英) The purpose of this research is to investigate the segregation pattern and phenomena of binary-sized mixtures in a double-walled rotating drum. In this study, the effects of rotation speed and axial length of rotating drum were discussed by experimental method.
The digital camera and the high speed camera were used to record the experiment process. The particle concentration and segregation degree were analyzed and discussed by digital camera in this research. Four different kind of segregation pattern could be found: positive segregation, reverse segregation, double segregation and the mixing state. We found that the segregation index will decrease with increasing rotating speed. The steady state will shift from positive separation to reverse separation with increasing rotating speed. Moreover, the transition regime includes double segregation or mixing state, depending on the drum depth.
The images from the high speed camera were used to analyze the velocity field of particles in the double-walled rotating drum. The streamwise particle velocities observed at different radial positions are almost equal to the tangential velocity of the boundary of the rotation drum. However, the phenomenon has a little difference at the upper-right corner. Particle velocity in this area will be discussed.
關鍵字(中) ★ 雙壁轉鼓
★ 尺寸分離
★ 顆粒體
★ 軸向深度
★ 轉速
關鍵字(英) ★ double-walled rotating drum
★ size segregation
★ axial length
★ rotation speed
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 iv
符號說明 vii
第一章 緒論 1
1.1 前言 1
1.2 顆粒體簡介 1
1.3 顆粒體的分離行為 2
1.5 轉鼓轉動時的分層(Layer) 4
1.6 轉動速度對於顆粒體之影響 5
1.7 轉鼓軸向深度對於顆粒體之影響 6
1.8 研究動機 6
1.9 研究架構 7
第二章 實驗方法與原理 10
2.1 實驗設備 10
2.2 實驗參數 14
2.3 分離指標 16
2.4 影像分析與處理方法 18
2.5 顆粒的追蹤 19
2.6 實驗配置與流程 20
2.7 軸心偏移量測 23
第三章 結果與討論 35
3.1 轉鼓軸向深度對於研究之影響 36
3.2 轉動速度對於研究之影響 40
3.3 分離程度 41
3.4 速度場 43
3.5 相圖 44
第四章 結論 79
第五章 參考文獻 81
參考文獻 1. Yan, X., Shi, Q., Hou, M., Lu, K. & Chan, C. K., “Effects of air on the segregation of particles in a shaken granular bed”, Physical Review Letters, 91, 2003.
2. Williams, J. C. & Khan, M. I., “Mixing and segregation of particulate solids of different particle size”, Chemical Engineer-London, 269, pp. 19-25, 1973.
3. Rosato, A., Strandburg, K. J., Prinz, F. & Swendsen, R. H., “Why the Brazil nuts are on top: Size segregation of particulate matter by shaking”, Physical Review Letters, 58, pp. 1038-1040, 1987.
4. Clément, C., Toussaint, R., Stojanova, M. & Aharonov, E., “Sinking during earthquakes: Critical acceleration criteria control drained soil liquefaction”, Physical Review E, 97, 2018.
5. Schröter, M., Ulrich, S., Kreft, J., Swift, J. B. & Swinney, H. L., “Mechanisms in the size segregation of a binary granular mixture” Physical Review E, 74, 2006.
6. Shinbrot, T. & Muzzio, F. J., “Reverse buoyancy in shaken granular beds”, Physical Review Letters, 81, pp. 4365-4368, 1998.
7. Ristow, G. H., “Particle mass segregation in a 2-dimensional rotating drum”, Europhysics Letters, 28, pp. 97-101, 1994.
8. Sanfratello, L. & Fukushima, E., “Experimental studies of density segregation in the 3D rotating cylinder and the absence of banding”, Granular Matter, 11, pp. 73-78, 2009.
9. Jain, N., Ottino, J. M. & Lueptow, R. M., “Effect of interstitial fluid on a granular flowing layer”, Journal of Fluid Mechanics, 508, pp. 23-44, 2004.
10. Ciamarra, M. P., De Vizia, M. D., Fierro, A., Tarzia, M., Coniglio, A. & Nicodemi, M., “Granular species segregation under vertical tapping: Effects of size, density, friction, and shaking amplitude”, Physical Review Letters, 96, 2006.
11. Ingram, A., Seville, J. P. K., Parker, D. J., Fan, X. & Forster, R. G., “Axial and radial dispersion in rolling mode rotating drums”, Powder Technology, 158, pp. 76-91, 2005.
12. Henein, H., Brimacomble, J. K. & Watkinson, A. P., “Experimental study of transverse bed motion in rotary kilns”, Metallurgical and Materials Transactions B, 14, pp. 191-205, 1983.
13. Rajchenbach, J., “Flow in powders: From discrete avalanches to continuous regime”, Physical Review Letters, 65, pp. 2221-2224, 1990.
14. Finger, T., von Ruling, F., Levay, S., Szabo, B., Borzsonyi, T. & Stannarius, R., “Segregation of granular mixtures in a spherical tumbler”, Physical Review E, 93, 2016.
15. Huang, D., Lu, M., Sen, S., Sun, M., Feng, Y., & Yang, A., “Spin Brazil-nut effect and its reverse in a rotating double-walled drum”, The European Physical Journal E, 36, 2013.
16. 黃瑋智,「雙壁轉鼓在不同轉速與壁面摩擦對於顆粒尺寸分離之研究」,國立中央大學,碩士論文,民國106年。
17. Xu, X. R., Sun, Q. C., Jin, F. & Chen, Y. P., “Measurements of velocity and pressure of a collapsing granular pile”, Powder Technology, 303, pp. 147-155, 2016.
18. Hill, KM. & Kakalios, J., “Reversible axial segregation of binary mixtures of granular materials”, Physical Review E, 49, pp. 3610-3613, 1993.
19. Jain, N., Ottino, J. M. & Lueptow, R. M., “Regimes of segregation and mixing in combined size and density: granular systems: an experimental study”, Granular Matter, 508, pp. 69-81, 2005.
20. 黃柏翰,「雙壁旋轉鼓之不同轉速對顆粒分離機制之研究」,國立中央大學,碩士論文,民國108年。
21. Mellmann, J., “The transverse motion of solids in rotating cylinders - forms of motion and transition behavior”, Powder Technology, 118, pp. 251-270, 2001.
22. Lu, G. & Müller, C. R., “Particle-shape induced radial segregation in rotating cylinders”, Granular Matter, 22, 2020.
23. Maione, R., De Richter, S. K., Mauviel, G. & Wild, G., “Axial segregation of a binary mixture in a rotating tumbler with non-spherical particles: Experiments and DEM model validation”, Powder Technology, 306, pp. 120-129, 2017.
24. Zhang, Z. W., Gui, N., Ge, L. & Li, Z. L., “Numerical study of particle mixing in a tilted three-dimensional tumbler and a new particle-size mixing index”, Advanced Powder Technology, 30, pp. 2338-2351, 2019.
25. Capart, H., Young, D. L. & Zech, Y., “Voronoï imaging methods for the measurement of granular flows”, Experiments in Fluids, 32, pp. 121-135, 2002.
指導教授 蕭述三 審核日期 2021-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明