博碩士論文 107323061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.15.137.94
姓名 李秉霙(Ping-Ying Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 添加氨氣的合成氣固態氧化物燃料電池性能與穩定性實驗研究
(Performance and Stability Measurements of Syngas Solid Oxide Fuel Cell with the Addition of Ammonia)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (全文檔遺失)
請聯絡國立中央大學圖書館資訊系統組 TEL:(03)422-7151轉57422,或E-mail聯絡
摘要(中) 本研究使用實驗室已建立的固態氧化物燃料電池(solid oxide fuel cell, SOFC)測試實驗平台,探討在不同實驗條件下,添加氨氣至合成氣燃料中,對鈕扣型陽極支撐電池的性能曲線(I-V curve)、電化學阻抗頻譜(electrochemical impedance spectra, EIS)以及性能穩定性的影響。在I-V curve和EIS測量方面,於三個不同的操作溫度(650°C、700°C、750°C)下進行,共使用了五種不同的燃料比例(單位為每分鐘毫升,sccm),分別為(1) 200 H2、(2) 70 H2+130 CO、(3) 56 H2+104 CO+20 NH3、(4) 47 H2+86 CO+34 NH3以及(5) 35 H2+65 CO+50 NH3,陰極則皆通以200 sccm的空氣。結果顯示,這五種燃料的性能皆會隨溫度上升而提高。其中,純氫的性能最好,而H2/CO和H2/CO/NH3則在不同溫度下,有不同的性能表現。在650°C時,H2/CO的性能會高於H2/CO/NH3,但在750°C時,則是H2/CO/NH3的性能會比H2/CO高。這是因為在低溫時(650°C),氨氣的裂解率會下降,故造成性能較大幅度地降低,反之在溫度為750°C時,氨氣的裂解率幾近100%。
在電池穩定性測試方面,於650°C、750°C下進行,並固定電流負載為350 mA cm-2,對陽極通以H2/CO (35/65 sccm)和H2/CO/NH3 (35/65/50 sccm)為燃料,測試電池性能可穩定運作的時間。結果顯示,在兩個溫度下,以合成氣加氨(H2/CO/NH3)為燃料的電池皆能穩定運作至少120小時,其中在650°C時,電池性能完全沒下降,而在750°C時,性能也僅有3.22%的降幅。相反地,以合成氣(H2/CO)為燃料時,在650°C、750°C下,電池僅分別運行了2小時和20.5小時後,其電壓便掉至0.2 V以下。添加氨氣之所以能抑制碳沉積,是因為NH3分子上具有孤對電子(lone pair of electrons),其相較於CO分子,更容易與Ni觸媒上的酸性位點結合,進而減少碳沉積;這也解釋了在650°C時,因氨裂解率較低,有足夠的氨與Ni的酸性位點結合,使得電池性能沒有下降。
以上結果顯示,當操作溫度為650°C,氨氣的添加對於合成氣SOFC在抑制碳沉積的方面,有良好的效果,對於推廣合成氣SOFC的實際應用應有重要的助益。
摘要(英) This thesis investigates the effects of adding ammonia to the syngas fuel on the performance, electrochemical impedance spectra (EIS), and operational stability of the button anode-supported solid oxide fuel cells (SOFCs) under different experimental conditions by using the SOFC test platform established in our laboratory. Current-voltage curves and EIS are measured under three different operating temperatures (650°C, 700°C, 750°C) using five different fuels: (1) 200 H2, (2) 70 H2 + 130 CO, (3) 56 H2 + 104 CO + 20 NH3, (4) 47 H2 + 86 CO + 34 NH3, and (5) 35 H2 + 65 CO + 50 NH3 (units in standard cubic centimeter per minute, sccm). The cathode is supplied with 200-sccm air for all five cases. Results show that the cell performance increases with increasing temperature. As expected, the hydrogen-fueled SOFC has the best performance. At 650°C, the performance of the syngas-fueled SOFC is higher than the syngas-ammonia-fueled SOFC, but at 750°C the performance of the syngas-ammonia-fueled SOFC is higher than the syngas-fueled SOFC. This is because the ammonia decomposition rate decreases at low temperature (650°C), resulting in a significant reduction in performance. On the other hand, the ammonia decomposition rate at 750°C is almost 100%.
The stability tests of the cells are conducted at both 650°C and 750°C where the current density is fixed at 350 mA cm-2 using H2/CO (35/65 sccm) and H2/CO/NH3 (35/65/50 sccm) as the fuels. Results show that the cells fueled by syngas and ammonia (H2/CO/NH3) can operate stably for at least 120 hours at both temperatures. At 650°C, the H2/CO/NH3 cell performance does not decrease at all, while at 750°C, there is only a 3.22% decrease in the cell performance after 120-hour operation. Conversely, when using syngas (H2/CO) as the fuel, the cell voltages drop below 0.2 V after only 2 hours and 20.5 hours at 650°C and 750°C, respectively. The reason why the addition of ammonia can inhibit carbon deposition is because NH3 molecule has a lone pair of electrons. Compared with CO molecule, it is easier to occupy the acidic sites of the Ni catalyst and then reduce carbon deposition. This also explains that the cell performance in the stability test does not decrease owing to sufficient ammonia molecules occupying the acidic sites of Ni catalyst under the low ammonia decomposition rate at 650°C.
The aforementioned results show that the addition of ammonia has a positive effect on suppressing carbon deposition in syngas SOFC when it is operated at low temperature (650°C), and it should be useful for the promotion of the practical application of syngas SOFCs.
關鍵字(中) ★ 合成氣SOFC
★ 添加氨氣
★ 穩定性測試
★ 酸性位點
★ 碳沉積
關鍵字(英) ★ Syngas SOFC
★ addition of ammonia
★ stability test
★ acidic sites
★ carbon deposition
論文目次 目錄
摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 viii
表目錄 x
符號說明 xi
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 3
1.3 解決方法 4
1.4 論文綱要 5
第二章 文獻回顧 6
2.1 SOFC基本介紹 6
2.2 SOFC的運作原理 10
2.3 SOFC的極化現象 13
2.3.1 歐姆極化(ohmic polarization) 14
2.3.2 活化極化(activation polarization) 15
2.3.3 濃度極化(concentration polarization) 16
2.4 電化學阻抗頻譜與等效電路模組 18
2.5 SOFC使用合成氣之相關文獻 23
2.6 SOFC碳沉積相關文獻 26
2.6.1 使用替代陽極材料 28
2.6.2 修改陽極結構 29
2.6.3 調整操作溫度 30
2.6.4 增加電流密度 31
2.6.5 對燃料進行加濕 31
2.6.6 在燃料中添加輔助氣體 32
第三章 實驗設備與量測方法 44
3.1 SOFC實驗量測平台 44
3.2 實驗流程與量測操作參數設定 49
第四章 結果與討論 52
4.1 氫氣、合成氣與合成氣/氨氣SOFC之溫度效應 52
4.2 燃料組成對SOFC性能之影響 57
4.3 合成氣SOFC的性能穩定性研究 61
第五章 結論與未來工作 68
5.1 結論 68
5.2 未來工作 69
參考文獻 70
參考文獻 [1] Y.T. Hung, S.S. Shy, A pressurized ammonia-fed planar anode-supported solid oxide fuel cell at 1-5 atm and 750-850°C and its loaded short stability test, Int. J. Hydrog. Energy 45 (2020) 27597-27610 (https://doi.org/10.1016/j.ijhydene.2020.07.064).
[2] A. Duffy, M. Hand, R. Wiser, E. Lantz, A.D. Riva, V. Berkhout, M. Stenkvist, D. Weir, R. Lacal-Arántegui, Land-based wind energy cost trends in Germany, Denmark, Ireland, Norway, Sweden and the United States, Appl. Energy 277 (2020) 114777
(https://doi.org/10.1016/j.apenergy.2020.114777).
[3] M. Shahbaz, C. Raghutla, K.R. Chittedi, Z. Jiao, X.V. Vo, The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index, Energy 207 (2020) 118162 (https://doi.org/10.1016/j.energy.2020.118162).
[4] S.-K. Dong, W.-N. Jung, K. Rashid, A. Kashimoto, Design and numerical analysis of a planar anode-supported SOFC stack, Renew. Energy 94 (2016) 637-650
(https://doi.org/10.1016/j.renene.2016.03.098).
[5] B. Stoeckl, V. Subotić, D. Reichholf, H. Schroettner, C. Hochenauer, Extensive analysis of large planar SOFC: Operation with humidified methane and carbon monoxide to examine carbon deposition based degradation, Electrochim. Acta 256 (2017) 325-336 (https://doi.org/10.1016/j.electacta.2017.09.026).
[6] R. Suwanwarangkul, E. Croiset, E. Entchev, S. Charojrochkul, M.D. Pritzker, M.W. Fowler, P.L. Douglas, S. Chewathanakup, H. Mahaudom, Experimental and modeling study of solid oxide fuel cell operating with syngas fuel, J. Power Sources 161 (2006) 308-322 (https://doi.org/10.1016/j.jpowsour.2006.03.080).
[7] H.R. Ellamla, I. Staffell, P. Bujlo, B.G. Pollet, S. Pasupathi, Current status of fuel cell based combined heat and power systems for residential sector, J. Power Sources 293 (2015) 312-328 (https://doi.org/10.1016/j.jpowsour.2015.05.050).
[8] A. Perna, M. Minutillo, E. Jannelli, V. Cigolotti, S.W. Nam, K.J. Yoon, Performance assessment of a hybrid SOFC/MGT cogeneration power plant fed by syngas from a biomass down-draft gasifier, Appl. Energy 227 (2018) 80-91
(https://doi.org/10.1016/j.apenergy.2017.08.077).
[9] H. You, J. Han, Y. Liu, C. Chen, Y. Ge, 4E analysis and multi-objective optimization of a micro poly-generation system based on SOFC/MGT/MED and organic steam ejector refrigerator, Energy 206 (2020) 118122 (https://doi.org/10.1016/j.energy.2020.118122).
[10] Y. Huang, A. Turan, Mechanical equilibrium operation integrated modelling of hybrid SOFC – GT systems: Design analyses and off-design optimization, Energy 208 (2020) 118334 (https://doi.org/10.1016/j.energy.2020.118334).
[11] S.S. Shy, S.C. Hsieh, H.Y. Chang, A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements, J. Power Sources 396 (2018) 80-87 (https://doi.org/10.1016/j.jpowsour.2018.06.006).
[12] V. Subotic, C. Schluckner, H. Schroettner, C. Hochenauer, Analysis of possibilities for carbon removal from porous anode of solid oxide fuel cells after different failure modes, J. Power Sources 302 (2016) 378-386 (https://doi.org/10.1016/j.jpowsour.2015.10.071).
[13] D. Lee, J. Myung, J. Tan, S.-H. Hyun, J.T.S. Irvine, J. Kim, J. Moon, Direct methane solid oxide fuel cells based on catalytic partial oxidation enabling complete coking tolerance of Ni-based anodes, J. Power Sources 345 (2017) 30-40
(https://doi.org/10.1016/j.jpowsour.2017.02.003).
[14] V. Alzate-Restrepo, J.M. Hill, Carbon deposition on Ni/YSZ anodes exposed to CO/H2 feeds, J. Power Sources 195 (2010) 1344-1351
(https://doi.org/10.1016/j.jpowsour.2009.09.014).
[15] K. Girona, J. Laurencin, J. Fouletier, F. Lefebvre-Joud, Carbon deposition in CH4/CO2 operated SOFC: Simulation and experimentation studies, J. Power Sources 210 (2012) 381-391 (https://doi.org/10.1016/j.jpowsour.2011.12.005).
[16] A. Lanzini, P. Leone, C. Guerra, F. Smeacetto, N.P. Brandon, M. Santarelli, Durability of anode supported solid oxides fuel cells (SOFC) under direct dry-reforming of methane, Chem. Eng. J. 220 (2013) 254-263 (https://doi.org/10.1016/j.cej.2013.01.003).
[17] V. Suboti, C. Schluckner, J. Mathe, J. Rechberger, H. Schroettner, C. Hochenauer, Anode regeneration following carbon depositions in an industrial-sized anode supported solid oxide fuel cell operating on synthetic diesel reformate, J. Power Sources 295 (2015) 55-66 (https://doi.org/10.1016/j.jpowsour.2015.06.133).
[18] V. Subotić, C. Schluckner, B. Stoeckl, M. Preininger, V. Lawlor, S. Pofahl, H. Schroettner, C. Hochenauer, Towards practicable methods for carbon removal from Ni-YSZ anodes and restoring the performance of commercial-sized ASC-SOFCs after carbon deposition induced degradation, Energy Convers. Manag. 178 (2018) 343-354
(https://doi.org/10.1016/j.enconman.2018.10.022).
[19] Z.-R. Xu, X.-Z. Fu, J.-L. Luo, K.T. Chuang, Carbon deposition on vanadium-based anode catalyst for SOFC using syngas as fuel, J. Electrochem. Soc. 157 (2010) B1556-B1560 (https://doi.org/10.1149/1.3481392).
[20] H. Sumi, Y.-H. Lee, H. Muroyama, T. Matsui, M. Kamijo, S. Mimuro, M. Yamanaka, Y. Nakajima, K. Eguchi, Effect of carbon deposition by carbon monoxide disproportionation on electrochemical characteristics at low temperature operation for solid oxide fuel cells, J. Power Sources 196 (2011) 4451-4457 (https://doi.org/10.1016/j.jpowsour.2011.01.061).
[21] H. Aslannejad, L. Barelli, A. Babaie, S. Bozorgmehri, Effect of air addition to methane on performance stability and coking over NiO–YSZ anodes of SOFC, Appl. Energy 177 (2016) 179-186 (https://doi.org/10.1016/j.apenergy.2016.05.127).
[22] A. Ideris, E. Croiset, M. Pritzker, Ni-samaria-doped ceria (Ni-SDC) anode-supported solid oxide fuel cell (SOFC) operating with CO, Int. J. Hydrog. Energy 42 (2017) 9180-9187 (https://doi.org/10.1016/j.ijhydene.2016.05.203).
[23] M.S. Khan, S.-B. Lee, R.-H. Song, J.-W. Lee, T.-H. Lim, S.-J. Park, Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni–YSZ) anode during solid oxide fuel cells operation: A review, Ceram. Int. 42 (2016) 35-48 (https://doi.org/10.1016/j.ceramint.2015.09.006).
[24] J. Mermelstein, M. Millan, N. Brandon, The impact of steam and current density on carbon formation from biomass gasification tar on Ni/YSZ, and Ni/CGO solid oxide fuel cell anodes, J. Power Sources 195 (2010) 1657-1666
(https://doi.org/10.1016/j.jpowsour.2009.09.046).
[25] M. Pillai, Y. Lin, H. Zhu, R.J. Kee, S.A. Barnett, Stability and coking of direct-methane solid oxide fuel cells: Effect of CO2 and air additions, J. Power Sources 195 (2010) 271-279 (https://doi.org/10.1016/j.jpowsour.2009.05.032).
[26] Y. Lin, Z. Zhan, S.A. Barnett, Improving the stability of direct-methane solid oxide fuel cells using anode barrier layers, J. Power Sources 158 (2006) 1313-1316
(https://doi.org/10.1016/j.jpowsour.2005.09.060).
[27] J. Xiao, Y. Xie, J. Liu, M. Liu, Deactivation of nickel-based anode in solid oxide fuel cells operated on carbon-containing fuels, J. Power Sources 268 (2014) 508-516
(https://doi.org/10.1016/j.jpowsour.2014.06.082).
[28] D. Singh, E. Hernández-Pacheco, P.N. Hutton, N. Patel, M.D. Mann, Carbon deposition in an SOFC fueled by tar-laden biomass gas: A thermodynamic analysis, J. Power Sources 142 (2005) 194-199 (https://doi.org/10.1016/j.jpowsour.2004.10.024).
[29] V. Alzate-Restrepo, J.M. Hill, Effect of anodic polarization on carbon deposition on Ni/YSZ anodes exposed to methane, Appl. Catal. A: Gen. 342 (2008) 49-55
(https://doi.org/10.1016/j.apcata.2007.12.039).
[30] R.S. Gemmen, J. Trembly, On the mechanisms and behavior of coal syngas transport and reaction within the anode of a solid oxide fuel cell, J. Power Sources 161 (2006) 1084-1095 (https://doi.org/10.1016/j.jpowsour.2006.06.012).
[31] 吳佩真,加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算,碩士論文,國立中央大學,桃園,台灣,2013。
[32] 李雪茹,加壓型SOFC陰極半電池實驗研究,碩士論文,國立中央大學,桃園,台灣,2013。
[33] 詹彥信,固態氧化物燃料電池使用甲烷燃氣之性能和電化學阻抗實驗研究,碩士論文,國立中央大學,桃園,台灣,2014。
[34] 梁俊德,加壓型SOFC碳沉積之實驗研究,碩士論文,國立中央大學,桃園,台灣,2015。
[35] 洪立翰,合成氣於加壓型SOFC之性能量測及其微氣渦輪機複合系統之模擬分析,碩士論文,國立中央大學,桃園,台灣,2015。
[36] 洪建宇,合成氣SOFC實驗:電解質支撐與陽極支撐全電池之比較,碩士論文,國立中央大學,桃園,台灣,2016。
[37] 張華屹,合成氣固態氧化物燃料電池性能與穩定性量測,碩士論文,國立中央大學,桃園,台灣,2018。
[38] D. Yu, Y. Mao, B. Gu, S. Nojavan, K. Jermsittiparsert, M. Nasseri, A new LQG optimal control strategy applied on a hybrid wind turbine/solid oxide fuel cell/in the presence of the interval uncertainties, Sustain. Energy, Grids Netw. 21 (2020) 100296
(https://doi.org/10.1016/j.segan.2019.100296).
[39] K.W.E. Colombo, V.V. Kharton, F. Berto, N. Paltrinieri, Transient system-level performance and thermo-mechanical stress analysis of a solid oxide fuel cell-based power generation plant with a multi-physics approach, Comput. Chem. Eng. 140 (2020) 106972 (https://doi.org/10.1016/j.compchemeng.2020.106972).
[40] N.P. Brandon, E. Ruiz-Trejo, P. Boldrin, Solid oxide fuel cell lifetime and reliability: Critical challenges in fuel cells, first ed., Elsevier, London, United Kingdom, 2017.
[41] Z. Wang, K. Sun, S. Shen, N. Zhang, J. Qiao, P. Xu, Preparation of YSZ thin films for intermediate temperature solid oxide fuel cells by dip-coating method, J. Membr. Sci. 320 (2008) 500-504 (https://doi.org/10.1016/j.memsci.2008.04.038).
[42] E. Ivers-Tiffe´e, A. Weber, D. Herbstritt, Materials and technologies for SOFC-components, J. Eur. Ceram. Soc. 21 (2001) 1805-1811
(https://doi.org/10.1016/S0955-2219(01)00120-0).
[43] D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells, Chem. Soc. Rev. 37 (2008) 1568-1578 (https://doi.org/10.1039/B612060C).
[44] A.B. Stambouli, E. Traversa, Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy, Renew. Sust. Energ. Rev. 6 (2002) 433-455 (https://doi.org/10.1016/S1364-0321(02)00014-X).
[45] B.C.H. Steele, Material science and engineering: The enabling technology for the commercialisation of fuel cell systems, J. Mater. Sci. 36 (2001) 1053-1068
(https://doi.org/10.1023/A:1004853019349).
[46] J.-H. Lee, H. Moon, H.-W. Lee, J. Kim, J.-D. Kim, K.-H. Yoon, Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni–YSZ cermet, Solid State Ion. 148 (2002) 15-26 (https://doi.org/10.1016/S0167-2738(02)00050-4).
[47] K. Kendall, M. Kendall, High-temperature solid oxide fuel cells for the 21st century: Fundamentals, design and applications, second ed., Elsevier, London, United Kingdom, 2015.
[48] S. Park, J.M. Vohs, R.J. Gorte, Direct oxidation of hydrocarbons in solid-oxide fuel cell, Nature 404 (2000) 265-267 (https://doi.org/10.1038/35005040).
[49] J.T.S. Irvine, P. Connor, Solid oxide fuels cells: Facts and figures, first ed., Springer, London, United Kingdom, 2013.
[50] B. de Boer, M. Gonzalez, H.J.M. Bouwmeester, H. Verweij, The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes, Solid State Ion. 127 (2000) 269-276 (https://doi.org/10.1016/S0167-2738(99)00299-4).
[51] J. Fleig, Solid oxide fuel cell cathodes: Polarization mechanisms and modeling of the electrochemical performance, Annu. Rev. Mater. Sci. 33 (2003) 361-382
(https://doi.org/10.1146/annurev.matsci.33.022802.093258).
[52] G. Kaur, Intermediate temperature solid oxide fuel cells: electrolytes, electrodes and interconnects, first ed., Elsevier, Amsterdam, Netherlands, 2020.
[53] J. Larminie, A. Dicks, Fuel cell systems explained, second ed., John Wiley & Sons, England, 2003.
[54] M. Ni, M.K.H. Leung, D.Y.C. Leung, Parametric study of solid oxide fuel cell performance, Energy Convers. Manag. 48 (2007) 1525-1535
(https://doi.org/10.1016/j.enconman.2006.11.016).
[55] K. Huang, J.B. Goodenough, Solid oxide fuel cell technology: Principles, performance and operations, first ed., Woodhead Publishing, Cambridge, United Kingdom, 2009.
[56] M. Gallo, P. Polverino, J. Mougin, B. Morel, C. Pianese, Coupling electrochemical impedance spectroscopy and model-based aging estimation for solid oxide fuel cell stacks lifetime prediction, Appl. Energy 279 (2020) 115718
(https://doi.org/10.1016/j.apenergy.2020.115718).
[57] G. De Lorenzo, O. Corigliano, M. Lo Faro, P. Frontera, P. Antonucci, S.C. Zignani, S. Trocino, F.A. Mirandola, A.S. Aricò, P. Fragiacomo, Thermoelectric characterization of an intermediate temperature solid oxide fuel cell system directly fed by dry biogas, Energy Convers. Manag. 127 (2016) 90-102
(https://doi.org/10.1016/j.enconman.2016.08.079).
[58] O. Corigliano, P. Fragiacomo, Numerical modeling of an indirect internal CO2 reforming solid oxide fuel cell energy system fed by biogas, Fuel 196 (2017) 352-361
(https://doi.org/10.1016/j.fuel.2017.01.123).
[59] O. Corigliano, P. Fragiacom, Numerical simulations for testing performances of an indirect internal CO2 reforming solid oxide fuel cell system fed by biogas, Fuel 196 (2017) 378-390 (https://doi.org/10.1016/j.fuel.2017.01.106).
[60] J. Kupecki, K. Motylinski, J. Milewski, Dynamic analysis of direct internal reforming in a SOFC stack with electrolyte-supported cells using a quasi-1D model, Appl. Energy 227 (2018) 198-205 (https://doi.org/10.1016/j.apenergy.2017.07.122).
[61] J. Kupecki, D. Papurello, A. Lanzini, Y. Naumovich, K. Motylinski, M. Blesznowski, M. Santarelli, Numerical model of planar anode supported solid oxide fuel cell fed with fuel containing H2S operated in direct internal reforming mode (DIR-SOFC), Appl. Energy 230 (2018) 1573-1584 (https://doi.org/10.1016/j.apenergy.2018.09.092).
[62] D. Pashchenko, Experimental investigation of reforming and flow characteristics of a steam methane reformer filled with nickel catalyst of various shapes, Energy Convers. Manag. 185 (2019) 465-472 (https://doi.org/10.1016/j.enconman.2019.01.103).
[63] D. Pashchenko, Experimental study of methane reforming with products of complete methane combustion in a reformer filled with a nickel-based catalyst, Energy Convers. Manag. 183 (2019) 159-166 (https://doi.org/10.1016/j.enconman.2018.12.102).
[64] N. Đurišić-Mladenović, B.D. Škrbić, A. Zabaniotou, Chemometric interpretation of different biomass gasification processes based on the syngas quality: Assessment of crude glycerol co-gasification with lignocellulosic biomass, Renew. Sust. Energ. Rev. 59 (2016) 649-661 (https://doi.org/10.1016/j.rser.2016.01.002).
[65] T. Nakyai, D. Saebea, Exergoeconomic comparison of syngas production from biomass, coal, and natural gas for dimethyl ether synthesis in single-step and two-step processes, J. Clean. Prod. 241 (2019) 118334 (https://doi.org/10.1016/j.jclepro.2019.118334).
[66] Y. Cao, Q. Wang, J. Du, J. Chen, Oxygen-enriched air gasification of biomass materials for high-quality syngas production, Energy Convers. Manag. 199 (2019) 111628
(https://doi.org/10.1016/j.enconman.2019.05.054).
[67] R. Toonssen, S. Sollai, P.V. Aravind, N. Woudstra., A.H.M. Verkooijen, Alternative system designs of biomass gasification SOFC/GT hybrid systems, Int. J. Hydrog. Energy 36 (2011) 10414-10425 (https://doi.org/10.1016/j.ijhydene.2010.06.069).
[68] F. Bellomare, M. Rokni, Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine, Renew. Energ. 55 (2013) 490-500
(https://doi.org/10.1016/j.renene.2013.01.016).
[69] H.A. Reyhani, M. Meratizaman, A. Ebrahimi, O. Pourali, M. Amidpour, Thermodynamic and economic optimization of SOFC-GT and its cogeneration opportunities using generated syngas from heavy fuel oil gasification, Energy 107 (2016) 141-164
(https://doi.org/10.1016/j.energy.2016.04.010).
[70] X. Wang, X. Lv, Y. Weng, Performance analysis of a biogas-fueled SOFC/GT hybrid system integrated with anode-combustor exhaust gas recirculation loops, Energy 197 (2020) 117213 (https://doi.org/10.1016/j.energy.2020.117213).
[71] O. Corigliano, P. Fragiacomo, Extensive analysis of SOFC fed by direct syngas at different anodic compositions by using two numerical approaches, Energy Convers. Manag. 209 (2020) 112664 (https://doi.org/10.1016/j.enconman.2020.112664).
[72] T. Chen, W.G. Wang, H. Miao, T. Li, C. Xu, Evaluation of carbon deposition behavior on the nickel/yttrium-stabilized zirconia anode-supported fuel cell fueled with simulated syngas, J. Power Sources 196 (2011) 2461-2468
(https://doi.org/10.1016/j.jpowsour.2010.11.095).
[73] L.Z. Bian, Z.Y. Chen, L.J. Wang, F.S. Li, K.C. Chou, Electrochemical performance and carbon deposition of anode-supported solid oxide fuel cell exposed to H2-CO fuels, Int. J. Hydrog. Energy 42 (2017) 14246-14252 (https://doi.org/10.1016/j.ijhydene.2016.08.214).
[74] A.N. Tabish, H.C. Patel, P.V. Aravind, Electrochemical oxidation of syngas on nickel and ceria anodes, Electrochim. Acta 228 (2017) 575-585
(https://doi.org/10.1016/j.electacta.2017.01.074).
[75] K.M. Ong, W.Y. Lee, J. Hanna, A.F. Ghoniem, Isolating the impact of CO concentration in syngas mixtures on SOFC performance via internal reforming and direct oxidation, Int. J. Hydrog. Energy 41 (2016) 9035-9047 (https://doi.org/10.1016/j.ijhydene.2016.03.107).
[76] X. Zhang, S.H. Chan, G. Li, H.K. Ho, J. Li, Z. Feng, A review of integration strategies for solid oxide fuel cells, J. Power Sources 195 (2010) 685-702
(https://doi.org/10.1016/j.jpowsour.2009.07.045).
[77] S.P. Jiang, S. Zhang, Y.D. Zhen, W. Wang, Fabrication and performance of impregnated Ni anodes of solid oxide fuel cells, J. Am. Ceram. Soc. 88 (2005) 1779-1785
(https://doi.org/10.1111/j.1551-2916.2005.00362.x).
[78] L. Liu, K. Sun, X. Zhou, X. Li, M. Zhang, N. Zhang, Sulfur tolerance improvement of Ni-YSZ anode by alkaline earth metal oxide BaO for solid oxide fuel cells, Electrochem. Commun. 19 (2012) 63-66 (https://doi.org/10.1016/j.elecom.2012.03.027).
[79] J. Ma, C. Jiang, P.A. Connor, M. Cassidy, J.T.S. Irvine, Highly efficient, coking-resistant SOFCs for energy conversion using biogas fuels, J. Mater. Chem. A 3 (2015) 19068-19076 (https://doi.org/10.1039/C5TA06421J).
[80] C. Neofytidis, V. Dracopoulos, S.G. Neophytides, D.K. Niakolas, Electrocatalytic performance and carbon tolerance of ternary Au-Mo-Ni/GDC SOFC anodes under CH4-rich internal steam reforming conditions, Catal. Today 310 (2018) 157-165
(https://doi.org/10.1016/j.cattod.2017.06.028).
[81] X.-F. Ye, S.R. Wang, J. Zhou, F.R. Zeng, H.W. Nie, T.L. Wen, Assessment of the performance of Ni-yttria-stabilized zirconia anodes in anode-supported solid oxide fuel cells operating on H2–CO syngas fuels, J. Power Sources 195 (2010) 7264-7267
(https://doi.org/10.1016/j.jpowsour.2010.04.016).
[82] X. Lv, H. Chen, W. Zhou, F. Cheng, S.-D. Li, Z. Shao, Direct-methane solid oxide fuel cells with an in situ formed Ni–Fe alloy composite catalyst layer over Ni–YSZ anodes, Renew. Energ. 150 (2020) 334-341 (https://doi.org/10.1016/j.renene.2019.12.126).
[83] Y. Lin, Z. Zhan, J. Liu, S.A. Barnett, Direct operation of solid oxide fuel cells with methane fuel, Solid State Ion. 176 (2005) 1827-1835
(https://doi.org/10.1016/j.ssi.2005.05.008).
[84] B. Stoeckl, V. Subotić, M. Preininger, H. Schroettner, C. Hochenauer, SOFC operation with carbon oxides: Experimental analysis of performance and degradation, Electrochim. Acta 275 (2018) 256-264 (https://doi.org/10.1016/j.electacta.2018.04.036).
[85] Z. Lyu, W. Shi, M. Han, Electrochemical characteristics and carbon tolerance of solid oxide fuel cells with direct internal dry reforming of methane, Appl. Energy 228 (2018) 556-567 (https://doi.org/10.1016/j.apenergy.2018.06.114).
[86] Y. Tian, Z. Lü, X. Guo, P. Wu, Catalytic activity of Ni-YSZ composite as anode for methane oxidation in solid oxide fuel cells, Int. J. Electrochem. Sci. 14 (2019) 1093-1106 (https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.20964%2F2019.02.48).
[87] W. Wang, R. Ran, C. Su, Y. Guo, D. Farrusseng, Z. Shao, Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes, J. Power Sources 240 (2013) 232-240 (https://doi.org/10.1016/j.jpowsour.2013.04.014).
[88] S. Seidler, M. Henke, J. Kallo, W. G. Bessler, U. Maier, K. A. Friedrich, Pressurized solid oxide fuel cells: Experimental studies and modeling, J. Power Sources 196 (2011) 7195-7202 (https://doi.org/10.1016/j.jpowsour.2010.09.100).
[89] J. Nielsen, M. Mogensen, SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study, Solid State Ion. 189 (2011) 74-81
(https://doi.org/10.1016/j.ssi.2011.02.019).
[90] R. Barfod, M. Mogensen, T. Klemensø, A. Hagen, Y.-L. Liu, P.V. Hendriksen, Detailed characterization of anode-supported SOFCs by impedance spectroscopy, J. Electrochem. Soc. 154 (2007) B371-B378 (https://doi.org/10.1149/1.2433311).
[91] Y. Im, H. Muroyama, T. Matsui, K. Eguchi, Ammonia decomposition over nickel catalysts supported on alkaline earth metal aluminate for H2 production, Int. J. Hydrog. Energy 45 (2020) 26979-26988 (https://doi.org/10.1016/j.ijhydene.2020.07.014).
指導教授 施聖洋(Shenqyang Shy) 審核日期 2021-1-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明