博碩士論文 107323108 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:3.12.163.76
姓名 藍立聖(Li-Sheng Lan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 車用鋁板與雙相鋼板之結合實驗與分析
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 汽車輕量化為目前全世界汽車工業非常關注的議題,而汽車使用的材料是最影響汽車輕量化的關鍵,本研究使用比重較輕的鋁合金與高強度之雙相鋼等材料作為實驗母材。除了汽車材料外,汽車車板連結方式也是汽車輕量化的一個主題,尤其是黏著劑的應用,黏著劑因能夠使異種材料相連結,且較少熱影響區而被廣泛使用。本研究分為三個主題: 黏著劑膠合實驗、AA5754鋁合金電阻點焊及雙相鋼電阻點焊。
黏著劑膠合實驗使用市面上常見之室溫與熱固化類型的膠,而被黏物鋁板以AA5052為主,AA1050及AA5754為輔,主要探討各類型黏著劑對鋁板黏著性質的影響。我們知道被黏物表面狀況對黏著性質影響甚鉅,因此對鋁板表面進行許多處理,如表面清潔、表面化學清洗及表面粗糙度改變等。實驗結果表明,對於研究所使用的室溫固化膠來說,鋁板表面使用化學清洗除了有較佳的剪力強度外,也是較為簡易的一種處理方式;而對於熱固化膠而言,鋁板表面不作任何處理的膠合試件即有穩定的剪切強度,可直接使用。
鋁合金電阻點焊之研究母材為AA5754,板厚為1.5-1.5、1.5-2.5及2.5-2.5 mm,以焊接電流、焊接時間、電極力和板厚作為實驗參數,並使用田口法探討參數對點焊品質的影響,初步結果顯示板厚對剝離負載和破壞能量影響最大,而焊接電流對熔核面積影響最大。後續探討表面處理的影響,實驗結果得知,點焊試件表面狀況會影響點焊結果,表面清潔可降低點焊強度變異值。板厚1.5-1.5 mm之最佳點焊參數為: 45 kA、60 mS、8 kN;板厚1.5-2.5 mm之最佳點焊參數為: 45 kA、70 mS、4 kN;板厚2.5-2.5 mm之最佳點焊參數為: 55 kA、60 mS、8 kN。
雙相鋼電阻點焊之研究母材為板厚1 mm 之DP590、DP780、DP980及DP1180等四種等級雙相鋼,以8、9、10、11 kA焊接電流和9、11、13 cycles焊接時間作為實驗參數,實驗目的為找出電極力5 kN之理想點焊參數範圍,並建立資料庫。DP590之理想點焊參數為: 焊接電流10 kA、焊接時間13 cycles;DP780之理想點焊參數為: 焊接電流9 kA、焊接時間13 cycles;DP980之理想點焊參數為: 焊接電流11 kA、焊接時間13 cycles;DP1180之理想點焊參數為: 焊接電流9 kA、焊接時間13 cycles。
摘要(英) At present, automobile lightweight is a topic of great concern to the world automobile industry, and the materials used in automobiles are the key to the greatest impact on automobile lightweight. In this study, we used lighter aluminum alloys and high-strength dual-phase steels. In addition to automobile materials, the connection method of automobile panels is also the focus of automobile lightweight, especially the application of adhesives, which are widely used because they can connect different materials. This research is divided into three parts, adhesive bonding experiment, AA5754 aluminum alloy resistance spot welding and dual-phase steel resistance spot welding.
The adhesive bonding experiment uses common room temperature glue and heat curing glue on the market. The aluminum plate to be glued is mainly AA5052, supplemented with AA1050 and AA5754. It mainly discusses the influence of various types of adhesives on the bonding properties of aluminum plates. We know that the surface condition of the adherend has a great influence on the adhesion performance, so it is necessary to carry out many treatments on the surface of the aluminum plate, such as surface cleaning, surface chemical cleaning and surface roughness. Experimental results show that for the room temperature curing adhesive used in the study, chemical cleaning of the surface of the aluminum plate not only has better shear strength, but also is a relatively simple treatment method. For heat-curing adhesives, the surface of the aluminum plate does not require any treatment. The glued samples have stable shear strength, so they can be used directly.
The basic material for aluminum alloy resistance spot welding research is AA5754, the plate thickness is 1.5-1.5, 1.5-2.5 and 2.5-2.5mm. The experiment uses welding current, welding time, electrode force and plate thickness as the experimental parameters. The preliminary results of Taguchi test indicate that the thickness of the steel plate has the greatest influence on the peeling load and energy absorption, while the welding current has the greatest influence on the nugget area. The parameters were then fine-tuned to conduct experiments and discuss the effects of surface treatment. The experimental results show that the surface condition of the weldment will affect the spot welding effect, and the surface cleaning can reduce the variation of the spot welding strength. The best spot welding parameters for plate thickness of 1.5-1.5 mm are: 45 kA, 60 mS, 8 kN; the best spot welding parameters for plate thickness of 1.5-2.5 mm are: 45 kA, 70 mS, 4 kN; plate thickness is 2.5 The best spot welding parameters for plate thickness of 2.5-2.5 mm are: 55 kA, 60 mS, 8 kN.
The research on resistance spot welding of dual phase steel is based on four grades of dual phase steel with a thickness of 1 mm, including DP590, DP780, DP980 and DP1180. With 8, 9, 10, 11 kA welding current and 9, 11, 13 cycle welding time as experimental parameters, the best spot welding parameter range of 5 kN electrode force was found and a database was established. The best spot welding parameters of DP590 are: welding current 10 kA, welding time 13 cycles; the best spot welding parameters of DP780 are: welding current 9 kA, welding time 13 cycles; the best spot welding parameters of DP980 are: welding current 11 kA, welding time 13 cycles; the best spot welding parameters of DP1180: welding current 9 kA, welding time 13 cycles.
關鍵字(中) ★ 黏著劑
★ 電阻點焊
★ AA5754
★ 雙相鋼
關鍵字(英)
論文目次 摘 要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 前言 1
1-2 研究背景與動機 1
第二章 文獻回顧 3
2-1 實驗用母材簡介 3
2-1-1 鋁合金 3
2-1-2 雙相鋼 3
2-2 黏著劑 4
2-2-1 黏著劑種類 5
2-2-2 黏著劑黏合原理簡介 6
2-2-3 影響黏合強度之原因 7
2-2-4 黏著劑實驗及製備方法 11
2-2-5 鋁合金與黏著劑之黏合 12
2-3 電阻點焊 13
2-3-1 電阻點焊簡介 13
2-3-2 電阻點焊操作流程 14
2-3-3 電阻點焊製程參數之影響 15
2-4 鋁合金電阻點焊 16
2-4-1 影響鋁點焊品質之因素 16
2-5 鋼電阻點焊 17
2-5-1 低碳鋼電阻點焊 19
2-5-2 高強度鋼(HSS)電阻點焊 20
2-5-3 雙相鋼電阻點焊 21
第三章 實驗規劃與設備 24
3-1 膠合實驗 24
3-1-1 實驗目的 24
3-1-2 母材與黏著劑選用 24
3-1-3 實驗方法 26
3-2 電阻點焊 31
3-2-1 鋁合金電阻點焊實驗規劃 31
3-2-2 雙相鋼電阻點焊實驗規劃 37
3-2-3 電阻點焊實驗測試與分析 39
3-3 實驗設備 43
3-3-1 鋁合金點焊設備 43
3-3-2 雙相鋼點焊設備 44
3-3-3 膠合實驗治具 46
3-3-4 粗糙度量測儀 47
3-3-5 噴砂設備 48
3-3-6 高溫爐 48
3-3-7 拉伸試驗 49
3-3-8 硬度量測 50
3-3-9 金相觀察 50
第四章 結果與討論-黏著劑膠合實驗 51
4-1 實驗參數變更 51
4-1-1 鋁板板厚調整 51
4-1-2 固化方式調整 52
4-2 膠合破壞模式分析 54
4-3 板材表面處理對膠合強度之影響 54
4-3-1 板材表面無處理 55
4-3-2 鋁板表面物理性質改變對膠合強度之影響 59
4-3-3 鋁板表面化學性質改變對膠合強度之影響 63
4-4 固化溫度對膠合強度之影響 67
4-5 黏著層厚度對膠合強度之影響 68
4-6 不同表面處理AA5052鋁板之膠合強度比較 69
第五章 結果與討論-鋁合金AA5754電阻點焊 71
5-1 預設製程參數之田口分析 71
5-1-1 剝離試驗結果分析 71
5-1-2 以焊接品質為望大特性分析 72
5-1-3 焊縫金相觀察 75
5-1-4 焊縫硬度量測 79
5-2 板材表面處理對AA5754鋁合金點焊強度之影響 80
5-2-1 實驗參數設計 80
5-2-2 拉剪試驗結果分析 80
第六章 結果與討論-雙相鋼點焊 83
6-1 雙相鋼點焊焊縫金相觀察 83
6-1-1 雙相鋼點焊焊縫之溫度梯度對金相組織之影響 83
6-1-2 各等級雙相鋼之不同點焊參數之金相組織觀察 85
6-1-3 雙相鋼點焊焊縫尺寸量測 89
6-2 雙相鋼點焊焊縫硬度量測 92
6-3 雙相鋼點焊之拉剪試驗結果分析 93
6-3-1 熔核直徑對點焊品質之影響 98
6-3-2 點焊電極壓痕對點焊品質之影響 98
6-4 焊縫破壞模式分析 99
6-4-1 焊縫破壞模式對點焊品質之影響 100
6-4-2 焊點之鈕扣直徑對點焊品質之影響 101
6-5 Weld lobe diagrams 103
6-5-1 以噴濺現象為限制邊界之Weld lobe diagrams 103
6-5-2 以點焊品質為限制邊界之Weld lobe diagrams 104
第七章 結論 105
7-1 黏著劑膠合實驗 105
7-2 AA5754鋁合金點焊實驗 106
7-3 雙相鋼點焊實驗 107
參考文獻 108
參考文獻 [ 1 ] Brett Smith, Adela Spulber, Technology Roadmaps: Intelligent Mobility Technology, Materials and Manufacturing Processes, and Light Duty Vehicle Propulsion, center for automotive research, 2017.
[ 2 ] MakeItFrom.com database。2009年,取自https://www.makeitfrom.com/material-group/AA-5000-Series-Aluminum-Magnesium-Wrought-Alloy。
[ 3 ] Dawei Zhao, “An investigation into weld defects of spot-welded dual-phase steel”, The International Journal of Advanced Manufacturing Technology, 92(5-8), pp.1-8, 2017.
[ 4 ] 世界鋼鐵協會(worldsteel),取自https://www.csc.com.tw/csc/ts/redi/redi_dev_p2.html。
[ 5 ] European Committee For Standardization: Continuously hot-dip coated steel flat products - Technical delivery conditions, in EN 10346:2009。2009,取自http://www.hrsteels.com/。
[ 6 ] voestalpine: Data sheet dual-phase high-ductility steels, in AHSS High-ductility。2018,取自http:// www.voestalpine.com/。
[ 7 ] Banea MD, Da Silva LFM, “Adhesively bonded joints in composite materials: an overview”, Proc Inst Mech Eng Part L J Mater Des Appl, 223(1), pp.1-18, 2009.
[ 8 ] 陳育誠:臺灣接著劑產業發展分析。2019年2月18日,取自https://ieknet.iek.org.tw/iekrpt/rpt_more.aspx?actiontype=rpt&indu_idno=7&domain=71&rpt_idno=491530671。
[ 9 ] Maxwell James Davis, Andrew McGregor, “Assessing adhesive bond failures: mixed-mode bond failures”, ISASI Australian Safety Seminar, Canberra, Australia, 2010.
[ 10 ] Akpinar S., “The strength of the adhesively bonded step-lap joints for different step numbers”, Composites Part B Engineering, 67, pp.170–178, 2014.
[ 11 ] P. Davies, L. Sohier, “Influence of adhesive bond line thickness on joint strength”, International Journal of Adhesion and Adhesives, 29(7), pp.724–736, 2009.
[ 12 ] Lucas F.M. da Silva, David A. Dillard, Bamber Blackman, Robert D. Adams, Testing Adhesive Joints: Best Practices, Wiley‐VCH Verlag GmbH & Co. KGaA, German, 2012.
[ 13 ] Meguid SA, Sun Y, “On the tensile and shear strength of nano-reinforced composite interfaces”, Materials and Design, 25, pp.289–296, 2004.
[ 14 ] Ascione F., “The influence of adhesion defects on the collapse of FRP adhesive joints”, Composites Part B: Engineering, 87, pp.291–298, 2016.
[ 15 ] Kürşat Gültekin, Ahmet Gürses, Zafer Eroglu, “The Effects of Graphene Nanostructure Reinforcement on the Adhesive Method and the Graphene Reinforcement Ratio on the Failure Load in Adhesively Bonded Joints”, Composites Part B: Engineering, 98, pp.362–369, 2016.
[ 16 ] Pocius, Alphonsus, Adhesion and Adhesives Technology, Hanser Publications, Cincinnati, 2012.
[ 17 ] Ebnesajjad, Sina, Ebnesajjad, Cyrus F., “Surface treatment of materials for adhesion bonding (2nd ed.) ”, William Andrew, Kidlington Oxford, 2014 .
[ 18 ] G. Grundmeier, W. Schmidt, M. Stratmann, “Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation”, Electrochimica. Acta, 45, pp.2515–2533, 2000.
[ 19 ] S. Verdier, N. Van Der Laak, “An electrochemical and SEM study of the mechanism of formation, morphology, and composition of titanium or zirconium fluoride-based coatings”, Surf. Coat. Technol., 200, pp.2955–2964, 2006.
[ 20 ] S.Sharifi Golru, M.M., Attar, B.Ramezanzadeh, “Morphological analysis and corrosion performance of zirconium based conversion coating on the aluminum alloy 1050”, Journal of Industrial and Engineering Chemistry, 2014.
[ 21 ] Hsien-Tang Chiu, Yung-Lung Liu, “Effects of surface treatments of AA 2024-T3 aluminum sheet on bonding to epoxy-based film adhesive”, J Polym Eng, 32, pp.503–51, 2012.
[ 22 ] Regone NN, Freire CMA, Ballester M, “Al-based anodic oxide films structure observation using field emission gun scanning electron microscopy”, Journal of Materials Processing Technology, 172(1), pp.146–151, 2006.
[ 23 ] Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to- Metal), ASTM International, 2011.
[ 24 ] Bruce C Duncan, Louise Elaine Crocker, “Review of Tests for Adhesion Strength”, 2001.
[ 25 ] G. Goeminne, H. Terryn, J. Vereecken, “Characterisation of conversion layers on aluminium by means of electrochemical impedance spectroscopy”, Electrochimica. Acta, 40, pp.479–486, 1995.
[ 26 ] 張希川,左麗娜,劉忠仁,安振之,「銅鋁管電阻焊的電壓補償控制系統」,焊接學報,109-112頁,2008年。
[ 27 ] Wang Y, Mo Z, Feng J, Zhang Z, “Effect of welding time on microstructure and tensile shear load in resistance spot welded joints of AZ31 Mg alloy”, Sci Technol Weld Join, 12(8), pp.671–676, 2007.
[ 28 ] James P, Chandler H, Evans J, Wen J, Browne D, Newton C, “The effect of mechanical loading on the contact resistance of coated aluminium”, Mater Sci Eng A, 230(1), pp. 194–201, 1997.
[ 29 ] B. S. Gawai, Dr. C. M. Sedani, “Optimization of process parameters for Resistance Spot Welding process of Austenitic SS 304 using Response Surface Method – A Review”, International Journal of Science and Research, 5(3), 2016.
[ 30 ] 朱正行等編著,電阻焊技術,機械工業出版社,民國八十九年。
[ 31 ] ZHANG Hong-wei, ”Analysis on usual welding defects of aluminum alloy[J]”, Light Alloy Fabrication Technology, 38(1), pp. 53−55, 2010.
[ 32 ] 吳賽楠、賈志宏、GHAFFARI Bita、劉慶,「AA5754 鋁合金電阻點焊接頭的微觀組織和力學性能」,中國有色金屬學報,第二十八卷第四期,2018年4月。
[ 33 ] Rashid M, Medley J, Zhou Y, “Nugget formation and growth during resistance spot welding of aluminium alloy 5182”, Can Metall Q, 50(1), pp.61–71, 2011.
[ 34 ] 蘇文欽,「車身修理的不同鋼板電阻點焊最佳條件之研究」,逢甲大學,碩士論文,民國90年。
[ 35 ] 徐正恩、曾光宏、謝肇琨、吳永坤,「高張力鋼板焊核缺陷之射線檢測研究」,台灣焊接協會,1-6頁,2011年。
[ 36 ] M. Goodarzi, S.P.H. Marashi, M. Pouranvar, “Dependence of overload performance on weld attributes for resistance spot welded galvanized low carbon steel”, Journal of Materials Processing Technology, 209(9), pp.4379-4384, 2009.
[ 37 ] American National Standards Institute, Recommended Practices for Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials, American Welding Society, 2002.
[ 38 ] Japanese industrial standard, Method of inspection for spot welds, Japanese Standards Association, 2008.
[ 39 ] Danial Kianersi, Amir Mostafaei, Ahmad Ali Amadeh, “Resistance spot welding joints of AISI 316L austenitic stainless steel sheets: Phase transformations, mechanical properties and microstructure characterizations”, Mater Des, 61, pp.251–263, 2014.
[ 40 ] Tota Pirdo Kasih , “Determination of Optimal Resistance Spot Welding Parameter on Low Carbon Steel Welding Quality”, 2nd International Conference on Technology, 2014.
[ 41 ] D. Gandy, Carbon Steel Handbook, EPRI, 2007.
[ 42 ] C. Beal, X. Kleber, D. Fabregue, M. Bouzekri, “Liquid zinc embrittlement of twinning-induced plasticity steel”, Scr. Mater., 66, pp.1030–1033, 2012.
[ 43 ] Takahashi Y., “Resistance spot welding of high strength steel sheets”, Welding Technology, 3, pp.24–28, 1977.
[ 44 ] H. Oikawa, G. Murayama, S. Hiwatashi, K. Matsuyama, “Resistance Spot Weldability of High Strength Steel Sheets for Automobiles and the Quality Assurance of Joints”, Welding in the World, 51, 3–4, pp.7–18, 2007.
[ 45 ] Young Gon Kim, In Ju Kim, Ji Sun Kim, Youn Il Chung, Du Youl Choi, “Evaluation of Surface Crack in Resistance Spot Welds of Zn-Coated Steel”, Materials Transactions, 55(1), pp. 171–175, 2014.
[ 46 ] P. Movahed, S. Kolahgar, S. P. H. Marashi, M. Pouranvari and N. Parvin, “The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite–martensite dual phase steel sheets”, Mater. Sci. Eng. A, pp.1–6, 2009.
[ 47 ] K. E. Easterling, “Modelling the weld thermal cycle and transformation behavior in the heat-affected zone”, Mathematical Modelling of Weld Phenomena, The Institute of Materials, 1993.
[ 48 ] E. Pakalnins, T. Morrisette, “Comparative resistance spot weld characterization of 600 MPa dual-phase steels using DOE analysis”, Proc. Int’l Sheet Metal Welding Conference XI, Livonia, Mich, 2004.
[ 49 ] M Pouranvari & S P H Marashi, “Critical review of automotive steels spot welding: process, structure and properties”, Science and Technology of Welding and Joining, 18(5), pp.361-403, 2013.
[ 50 ] FENG Qiao Bo, ZHU Yun Feng, ZHAO He Xin, “Research on resistance spot welding of DP980 dual phase steel”, Advanced Materials Research, 2014.
[ 51 ] Majid Pouranvari, Eslam Ranjbarnoodeh , “Dependence of the fracture mode on the welding variables in the resistance spot welding of ferrite-martensite DP980 advanced high-strength steel”, Materials and Technology, 46(6), pp.665-671, 2012.
[ 52 ] 3M Scotch-WeldTM Epoxy Adhesives DP460 Off-White (DP460 NS), March 2004.
[ 53 ] 3M Scotch-WeldTM Low-Odor Acrylic Adhesives DP810 (DP810 NS), June 2004.
[ 54 ] Scotch-WeldTM Multi-Material & Composite Urethane Adhesives DP6310NS and DP6330NS, October 2016.
[ 55 ] Epochem Structural adhesive AO1200 TDS.
[ 56 ] Loctite EA E-909TM technical data sheet, July 2016.
[ 57 ] 張黎,「SPC、EPC和田口方法的比較與評價」,科技進步與對策,22(9),2005年。
[ 58 ] 林宗岳,「應用田口實驗法之微細加工參數規劃」,國立中興大學,碩士論文,民國101年。
[ 59 ] L. Han, M. Thornton, D. Boomer, M. Shergold, “The importance of governing metal thickness for resistance spot welding of aluminium”, Key Engineering Materials, 473, pp.319-326, 2011.
[ 60 ] Specimen dimensions and procedure for mechanized peel testing resistance spot, seam and embossed projection welds, International standard, 2000.
[ 61 ] SpotTrack: Standards and Testing,取自http://www.spottrack.eu/welcome/standards-testing.jsp。
[ 62 ] A.F. Harris, A. Beevers, “The effects of grit-blasting on surface properties for adhesion”, International Journal of Adhesion & Adhesives, 19, pp.445-452, 1999.
[ 63 ] N. Saleema, D.K. Sarkar, R.W. Paynter, D. Gallant, M. Eskandarian, “A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications”, Applied Surface Science, 261, pp.742– 748, 2012.
[ 64 ] Kahraman R, Sunar M, Yilbas B., “Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive”, J Mater Process Technol, 205, pp.183–189, 2008.
[ 65 ] Arenas JM, Narbo´n JJ, Alı´a C, “Optimum adhesive thickness in structural adhesives joints using statistical techniques based on Weibull distribution”, Int J Adhes Adhes, 30, pp.160–165, 2010.
[ 66 ] Castagnetti D, Spaggiari A, Dragoni E, “Effect of bondline thickness on the static strength of structural adhesives under nearly-homogeneous shear stresses”, J Adhes, 87, pp.780–803, 2011.
[ 67 ] Naito K, Onta M, Kogo Y, “The effect of adhesive thickness on tensile and shear strength of polyimide adhesive”, Int J Adhes Adhes, 36, pp.77–85, 2012.
[ 68 ] Huiling Wei, Qun Gao, Zhijian Zong, “Experimental Research and Analysis of Mechanical Properties of Aluminum Alloy 6063 Adhesive Bonding”, Applied Mechanics and Materials, 271-272, pp.156-162, 2013.
[ 69 ] S. M. Manladan, F. Yusof, S. Ramesh, M. Fadzil, Z. Luo, S. Ao, “A review on resistance spot welding of aluminum alloys”, Int J Adv Manuf Technol, 2016.
[ 70 ] Hu J., “Characterization and Modeling of Deformation, Springback, and Failure in Advanced High Strength Steels (AHSSs)”, Clemson University, Doctoral Dissertation, 2016.
[ 71 ] 林非錯,「電阻點焊參數對鍍鋅鋼板之微結構與機械性質影響研究」,南台科技大學,碩士論文,民國102年。
指導教授 施登士 審核日期 2021-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明