博碩士論文 107324001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.139.235.99
姓名 陳鋭庭(Jui-Ting Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討利用遠紅外線物質改變水分子團簇對菌種生長之影響
(A study of the bacteria growth by using far-infrared emitting materials changing the water clusters)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 近年來隨者大家對於健康保健意識的提升,各式抗菌相關產品紛紛湧出,遠紅外線在抗菌及醫療產品上也成了熱門話題之一。相比於其他化學加工產品所製造的抗菌商品,遠紅外線在抑制細菌及病毒上對人體較為無害。同時,近期有學者研究出遠紅外線的波段能夠產生共振能,使水分子團活化,形成小分子水,並驗證出小分子水對於人體健康及排毒有顯著的提升,使小分子水在未來抗菌產品上受到很大的關注。
本研究利用陶瓷材料及不鏽鋼金屬材料作為能使一般水分子團變成小分子水的物質,由於其有良好的遠紅外線放射率,因此可以藉此共振能去細化水分子團,使水分子團變小。不同的材料放射率也不同,形成小分子水的能力也不盡相同。所以本實驗透過這兩種材料去比較其形成小分子水的能力並藉由其材料形成之小分子水對菌體的影響做探討。
本研究在經過適當分析後成功證實了陶瓷材料及不鏽鋼金屬材料皆能使水分子團形成小分子水,並在小分子水環境下培養酵母菌及醋酸菌中發現其對酵母菌Saccharomyces pastorianus Lagar 23、 SafAle S-33及SafAle US05相對抑制率分別達76.9 %、78 %及78.6 %,且在醋酸菌Gluconacetobacter sp.SC-01 KIM-Y的相對抑制率也達45.6 %,充分證實了小分子水對於菌種抑制上有相當好的作用。
摘要(英) In recent year, with the improvement of health care awareness, a variety of antibacterial products have poured out, far infrared ray in antibacterial and medical products have also become one of the trending topics. Far infrared ray is less harmful in suppressing and viruses compared to bacteriostatic products manufactured by other chemical and processed commodities. At the same time, recent scholars have studied that far infrared wavelength can produce resonance energy, which cause the water molecular activating and forming the micro-clustered water. Also through the related research and analysis, the micro-clustered water has already been proved that it can improve significantly human health and detoxification. Thus, the micro-clustered water have been received great attention on the antibacterial products in the future.

This study uses ceramic materials and stainless steel materials as materials that can turn ordinary water molecular groups into micro-clustered water because they have great far infrared radiation rates, that can be used to refine water molecular groups. Different materials have different far infrared radiation, the ability to form micro-clustered water is also different. As a result, this experiment through these two materials to contrast their ability to form micro-clustered water. Besides, testing the effects on the bacteria grows in micro-clustered water.

After proper analysis, this study successfully confirmed that ceramic materials and stainless steel metal materials can make normal water molecular groups form micro-clustered water. In addition, the bacteria such as Saccharomyces and Gluconactobacter grow in the micro-clustered water will suppress their breeding ability. The inhibition rate of Saccharomyces pastorianus Lagar 23, SafAle S-33 , SafAle US05 and Gluconacetobacter sp.SC-01 KIM-Y are 76.9%, 78%, 78.6% and 45.6%. These results fully proved that micro-clustered water has a great impact on the bacteria suppression.
關鍵字(中) ★ 小分子團簇水
★ 抑制菌種
關鍵字(英) ★ Micro-clustered water
★ Inhibition of bacteria
論文目次 摘要........................................... i
Abstract....................................... ii
誌謝........................................... iii
目錄........................................... iv
圖目錄.......................................... viii
表目錄.......................................... xi
一、緒論......................................... 1
1-1研究動機.................................. 1
1-2研究目的.................................. 3
二、文獻回顧..................................... 4
2-1遠紅外線.................................. 4
2-1-1遠紅外線的基本介紹..................... 4
2-1-2遠紅外線的功效........................ 4
2-1-3釋放遠紅外線的物質..................... 5
2-2遠紅外線材料的基本介紹..................... 6
2-2-1金屬氧化物材料(Metal oxide material).. 6
2-2-2陶瓷材料(Ceramic material)............ 9
2-3小分子水團簇(Micro-clustered water)....... 11
2-3-1簡介小分子水團簇...................... 11
2-3-2形成機制.............................. 11
2-4菌種介紹.................................. 18
三、材料與方法................................... 20
3-1實驗規劃.................................. 20
3-2實驗材料.................................. 22
3-2-1實驗菌株.............................. 22
3-2-2實驗原料.............................. 24
3-2-3實驗藥品.............................. 25
3-2-4實驗儀器與設備........................ 27
3-3實驗方法.................................. 29
3-3-1小分子水的製造與驗證................... 29
3-3-2菌種保存及固態培養..................... 31
3-3-3液態種瓶培養.......................... 32
3-3-4液態培養之菌種生長實驗................. 34
3-4分析方法.................................. 37
3-4-1總多酚類化合物含量測定(Total phenolic compounds).37
3-4-2抗氧化能力分析-DPPH自由基清除能力....... 38
3-4-3菌重分析.............................. 40
3-4-4乙醇與醋酸濃度分析..................... 42
四、結果與討論................................... 44
4-1水分子團簇的溶解度測試..................... 44
4-1-1不同來源的水形成小分子水後對溶解度的影響 44
4-1-2小分子水靜置時間對溶解度的影響.......... 46
4-1-3小分子水靜置溫度對溶解度的影響.......... 48
4-1-4材料順序影響水分子團溶解能力之判定...... 50
4-2小分子水對於抗氧化活性及總多酚含量的影響..... 52
4-3菌種生長曲線.............................. 55
4-4小分子水環境下之菌種生長曲線 ................57
4-5小分子水對酵母菌之影響..................... 59
4-5-1營養源添加小分子水後pH值的變化.......... 59
4-5-2稀釋營養源對酵母菌在小分子水環境下做生長分析.60
4-5-3遠紅外線物質對菌種的影響............... 62
4-5-4小分子水環境下之不同種酵母菌的菌重分析.. 64
4-5-5小分子水對酵母菌菌液pH值之影響.......... 66
4-5-6小分子水對酵母菌代謝產物之影響.......... 68
4-6小分子水對醋酸菌之影響..................... 70
4-6-1稀釋營養源對醋酸菌在小分子水環境下做生長分析.....70
4-6-2小分子水環境下醋酸菌的菌重分析.......... 72
4-6-3小分子水對醋酸菌菌液pH值之影響.......... 73
4-6-4小分子水對醋酸菌代謝產物之影響.......... 74
五、結論......................................... 77
參考文獻 ........................................79

圖目錄
圖2-1不鏽鋼材料纏繞複合材料對遠紅外線放射率的影響..........7
圖2-2聚丙烯纖維材料抗菌測試實驗 [11]......................8
圖2-3酸性和鹼性條件下水電解的反應方程式[26]...............13
圖2-4酸性電解水對於冠狀病毒(SARS-COV-2)抑製流程圖[28].....13
圖2-5電解還原水對白鼠血糖濃度的影響[30]...................14
圖2-6電漿活化水(PAW)對於金黃色葡萄球菌生長菌數的影響[34]...16
圖2-7經遠紅外線處理的自來水與正常自來水在NMR 17O下之半高寬[38]17
圖3-1實驗流程圖.........................................21
圖3-2 Saccharomyces pastorianus Lagar23於固態培養基之狀態.22
圖3-3 SafAle S-33於固態培養基之狀態...................... 22
圖3-4 SafAle US05於固態培養基之狀態...................... 23
圖3-5 Gluconacetobacter sp.SC-01 KIM-Y於固態培養基之狀態. 23
圖3-6不鏽鋼之金屬材料 (中州科技股份有限公司CCQ).............24
圖3-7陶瓷能量球之材料 (恩德喜公司 NDC).....................24
圖3-8簡易製造小分子水流程圖................................29
圖3-9總多酚含量對吸收值(OD735nm)之檢量線...................38
圖3-10抗氧化劑(RH)與DPPH自由基之反應機制...................39
圖3-11 Saccharomyces pastorianus Lagar23細胞乾重對OD600nm之檢量線.....................................................40
圖3-12 SafAle S-33細胞乾重對OD600nm之檢量線...............40
圖3-13 SafAle US05細胞乾重對OD600nm之檢量線...............41
圖3-14 Gluconacetobacter sp.SC-01 KIM-Y細胞乾重對OD600nm之檢量線....................................................41
圖3-15乙醇標準品濃度之檢量線..............................43
圖3-16醋酸標準品濃度之檢量線..............................43
圖4-1不同水源形成小分子水後對紅茶粉溶解力之檢測(OD380nm)....45
圖4-2比較不同靜置時間下遠紅外線材料對水溶解紅茶粉之動力曲線圖..47
圖4-3比較不同靜置溫度下遠紅外線材料對水溶解紅茶粉的影響(OD380nm) ........................................................49
圖4-4比較不同加入順序之遠紅外線材料對溶解強度之影響(OD380nm)..51
圖4-5 Saccharomyces pastorianus Lagar 23於30℃下的生長曲線.55
圖4-6 SafAle S-33於30℃下的生長曲線.......................56
圖4-7 SafAle US05於30℃下的生長曲線.......................56
圖4-8 Gluconacetobacter sp.SC-01 KIM-Y於30℃下的生長曲線..56
圖4-9 Saccharomyces pastorianus Lagar 23於小分子水環境下的生長曲線....................................................57
圖4-10 SafAle S-33於小分子水環境下的生長曲線..............58
圖4-11 SafAle US05於小分子水環境下的生長曲線..............58
圖4-12 Gluconacetobacter sp.SC-01 KIM-Y於小分子水環境下的生長曲線....................................................58
圖4-13未經接種菌前的培養液pH值變化情形....................59
圖4-14不同稀釋倍率培養液在不同材料形成的小分子水中菌種生長情形.61
圖4-15含有材料及移出材料之小分子水對菌種的影響.............63
圖4-16小分子水環境下對Saccharomyces pastorianus Lagar 23菌重影響......................................................64
圖4-17小分子水環境下對SafAle S-33菌重之影響...............65
圖4-18小分子水環境下對SafAle US05菌重之影響...............65
圖4-19小分子水環境下Saccharomyces pastorianus Lagar 23 pH值之變化....................................................66
圖4-20小分子水環境下SafAle S-33 pH值之變化................67
圖4-21小分子水環境下SafAle pH值之變化.....................67
圖4-22比較不同環境下之酵母菌發酵動力曲線圖..................69
圖4-23不同稀釋倍率培養液在不同材料形成的小分子水中菌種生長情形.71
圖4-24 小分子水環境下對Gluconacetobacter sp.SC-01 KIM-Y菌重影響......................................................72
圖4-25 小分子水環境下Gluconacetobacter sp.SC-01 KIM-Y pH值之變化......................................................73
圖4-26 比較不同環境下之醋酸菌發酵動力曲線圖.................75

表目錄
表2-1經遠紅外線加工後的聚丙烯與原聚丙烯的性質比較[10]......8
表2-2陶瓷纖維材料對於遠紅外線放射率及草莓保存之影響[18]....10
表2-3遠紅外線破壞氫鍵之小分子水性質[39]...................17
表3-1實驗用藥品之詳細目錄................................25
表3-2實驗設備清單.......................................27
表3-3 Saccharomyces cerevisiae 固態平面培養基之組成......31
表3-4 Gluconacetobacter sp.SC-01 KIM-Y固態平面培養基之組成.32
表3-5 Saccharomyces cerevisiae 液態種瓶培養基之組成......33
表3-6 Gluconacetobacter sp.SC-01 KIM-Y液態種瓶培養基之組成.33
表3-7乙醇、醋酸GC分析條件................................43
表4-1 25℃下小分子水沖泡紅茶之總多酚含量及抗氧化能力分析....53
表4-2 30℃下小分子水沖泡紅茶之總多酚含量及抗氧化能力分析....54
表4-3 35℃下小分子水沖泡紅茶之總多酚含量及抗氧化能力分析....54
表4-4不同環境下之酵母菌動力曲線之數據.....................70
表4-5不同環境下之醋酸菌動力曲線之數據.....................76
參考文獻 [1] F. Vatansever, and M. R. Hamblin, "Far infrared radiation (FIR): its biological effects and medical applications," Photonics & lasers in medicine, vol. 1, no. 4, pp. 255-266, 2012.

[2] F.N. Keutsch, R.S. Fellers, M.R. Viant, and R.J. Saykally, "Far-infrared laser vibration–rotation–tunneling spectroscopy of water clusters in the librational band region of liquid water," The Journal of Chemical Physics, vol. 114, no. 9, pp. 4005-4015, 2001.

[3] J. Xiang, J. Chen, N. Zhang, H. Yao, and C. Guo, "Far red and near infrared double-wavelength emitting phosphor Gd2ZnTiO6: Mn4+, Yb3+ for plant cultivation LEDs," Dyes and Pigments, vol. 154, pp. 257-262, 2018.

[4] C.-A. Lin, T.-C. An, and Y.-H. Hsu, "Study on the far infrared ray emission property and adsorption performance of bamboo charcoal/polyvinyl alcohol fiber," Polymer-Plastics Technology and Engineering, vol. 46, no. 11, pp. 1073-1078, 2007.

[5] D. Zhu, J. Liang, Y. Ding, G. Xue, and L. Liu, "Effect of heat treatment on far infrared emission properties of tourmaline powders modified with a rare earth," Journal of the American Ceramic Society, vol. 91, no. 8, pp. 2588-2592, 2008.

[6] T.K. Leung, P.J. Huang, Y.C. Chen, and C.M. Lee, "Physical‐chemical test platform for room temperature, far‐infrared ray emitting ceramic materials (cFIR)," Journal of the Chinese Chemical Society, vol. 58, no. 5, pp. 653-658, 2011.

[7] X. Zhao, Y. Zhang, J. Xu, D. Chen, and G. Chen, "The synergistic effects study between metal oxides and graphene on far-infrared emission performance," SN Applied Sciences, vol. 2, no. 4, pp. 1-7, 2020.

[8] H. Tao, C. Zhou, Y. Hong, Y. Zheng, K. Zhang, J. Zheng, and L. Zhang, "Influence of Warm Predeformation Temperature on the Corrosion Property of Type 304 Austenitic Stainless Steel," Journal of Materials Engineering and Performance, vol. 29, no. 7, pp. 4515-4528, 2020.

[9] T.A. Lin, B.C. Shiu, J.H. Lin, and C.W. Lou, "Tensile, electromagnetic, and far‐infrared properties of stainless steel/far‐infrared polyester composite materials," Polymer Composites, vol. 40, no. 6, pp. 2219-2230, 2019.

[10] S.H. Hwang, J. Song, Y. Jung, O.Y. Kweon, H. Song, and J. Jang, "Electrospun ZnO/TiO2 composite nanofibers as a bactericidal agent," Chem Commun (Camb), vol. 47, no. 32, pp. 9164-9166, 2011.

[11] C.-F.J. Kuo, C.-C. Fan, T.-L. Su, S.-H. Chen, and W.L. Lan, "Nano composite fiber process optimization for polypropylene with antibacterial and far-infrared ray emission properties," Textile Research Journal, vol. 86, no. 16, pp.1677-1687, 2016.

[12] E. Bajraktarova-Valjakova, V. Korunoska-Stevkovska, B. Kapusevska, N. Gigovski, C. Bajraktarova-Misevska, and A. Grozdanov, "Contemporary dental ceramic materials, a review: chemical composition, physical and mechanical properties, indications for use," Open access Macedonian journal of medical sciences, vol. 6, no. 9, p. 1742, 2018.

[13] I. Gonzalo-Juan, and R. Riedel, "Ceramic synthesis from condensed phases," ChemTexts, vol. 2, no. 2, p. 6 , 2016.

[14] I. Khader, C. Koplin, C. Schröder, J. Stockmann, and W. Beckert, W. Kunz, and A. Kailer, "Characterization of a silicon nitride ceramic material for ceramic springs," Journal of the European Ceramic Society, vol. 40, no. 10, pp. 3541-3554, 2020.

[15] D. Eliche-Quesada, L. Pérez-Villarejo, and P. José Sánchez-Soto, "Introduction to Ceramic Materials: Synthesis, Characterization," Applications, and Recycling, In.: DOI, 2019.

[16] A. Abyzov, "Aluminum oxide and alumina ceramics (review). Part 1. Properties of Al 2 O 3 and commercial production of dispersed Al 2 O 3," Refractories and Industrial Ceramics, vol. 60, no. 1, pp.24-32, 2019.

[17] W. Roger Cannon, E. Gugel, G. Leimer, G. Woetting, and R.B. Heimann, "Ceramics, advanced structural products," Ullmann′s Encyclopedia of Industrial Chemistry, vol. 60, no. 1, pp.24-32, 2000.

[18] Y. Xiong, S. Huang, W. Wang, X. Liu, and H. Li, "Properties and applications of high emissivity composite films based on far-infrared ceramic powder," Materials, vol. 10, no. 12, p. 1370, 2017.

[19] M.B. Ahirwar, S.R. Gadre, and M.M. Deshmukh, "Direct and Reliable Method for Estimating the Hydrogen Bond Energies and Cooperativity in Water Clusters, W n, n= 3 to 8," The Journal of Physical Chemistry A, vol. 124, no. 33, pp. 6699-6706, 2020.

[20] Ż. Król-Kilińska, D. Kulig, I. Yelkin, A. Zimoch-Korzycka, Ł. Bobak, and A. Jarmoluk, "The Effect of Using Micro-Clustered Water as a Polymer Medium," International Journal of Molecular Sciences, vol. 22, no. 9, p.4730, 2021.

[21] F. Yerlikaya, G. Camlik, E.K. Akkol, Z. Degim, I.T. Degim, and E. Sobarzo-Sánchez, "Formation of Quantum Water in Nanoparticulate Systems," Journal of Drug Delivery Science and Technology, p.102456, 2021.

[22] R. Li, Z. Jiang, H. Yang, and Y. Guan, "Effects of ions in natural water on the 17O NMR chemical shift of water and their relationship to water cluster," Journal of molecular liquids, vol. 126, no.1, pp. 14-18, 2006.

[23] Y.-R. Huang, Y.-C. Hung, S.-Y. Hsu, Y.-W. Huang, and D.-F. Hwang, "Application of electrolyzed water in the food industry," Food control, vol. 19, no. 4, pp. 329-345, 2008.

[24] N. Kitaori, M. Yoshioka, K. Sekido, N. Ohnishi, N. Maeda, and S. Matsuishi, "Development of a Small-sized Electrolyzed Water Generator for Sterilization," Electrochemistry, vol. 81, no. 8, pp. 627-633, 2013.

[25] X. Xuan, and J. Ling, "Generation of electrolyzed water," Electrolyzed Water in Food: Fundamentals and Applications, vol. 1-16, 2019.

[26] M. Schalenbach, G. Tjarks, M. Carmo, W. Lueke, M. Mueller, and D. Stolten, "Acidic or alkaline? Towards a new perspective on the efficiency of water electrolysis," Journal of The Electrochemical Society, vol. 163, no. 11, p.F3197, 2016.

[27] T. Oomori, T. Oka, T. Inuta, and Y. ARATA, "The efficiency of disinfection of acidic electrolyzed water in the presence of organic materials," Analytical sciences, vol.16, no. 4, pp. 365-369, 2000.

[28] Y. Takeda, H. Uchiumi, S. Matsuda, and H. Ogawa, "Acidic electrolyzed water potently inactivates SARS-CoV-2 depending on the amount of free available chlorine contacting with the virus," Biochemical and Biophysical Research Communications, vol. 530, no. 1, pp. 1-3, 2020.

[29] M. Henry, and J. Chambron, "Physico-Chemical, Biological and Therapeutic Characteristics of Electrolyzed Reduced Alkaline Water (ERAW)," Water, vol. 5, no. 4, pp. 2094-2115, 2013.

[30] M.J. Kim, and H.K. Kim, "Anti-diabetic effects of electrolyzed reduced water in streptozotocin-induced and genetic diabetic mice," Life Sci, vol. 79, no. 24, pp. 2288-2292, 2006.

[31] H. Conrads, and M. Schmidt, "Plasma generation and plasma sources," Plasma Sources Science and Technology, vol. 9, no. 4, p. 441, 2000.

[32] J.E. Foster, "Plasma-based water purification: Challenges and prospects for the future," Physics of Plasmas, vol. 24, no. 5, p.055501, 2017.

[33] N.K. Kaushik, B. Ghimire, Y. Li, M. Adhikari, M. Veerana, N. Kaushik, N. Jha, B. Adhikari, S.-J. Lee, and K. Masur, "Biological and medical applications of plasma-activated media, water and solutions," Biological chemistry, vol. 400, no. 1, pp. 39-62 , 2019.

[34] A. Soni, J. Choi, and G. Brightwell, "Plasma-Activated Water (PAW) as a Disinfection Technology for Bacterial Inactivation with a Focus on Fruit and Vegetables," Foods, vol. 10, no. 1, p. 166, 2021.

[35] Y.M. Zhao, S. Ojha, C. Burgess, D.W. Sun, and B. Tiwari, "Inactivation efficacy and mechanisms of plasma activated water on bacteria in planktonic state," Journal of applied microbiology, vol. 129, no. 5, pp. 1248-1260, 2020.

[36] Q. Xiang, W. Wang, D. Zhao, L. Niu, K. Li, and Y. Bai, "Synergistic inactivation of Escherichia coli O157: H7 by plasma-activated water and mild heat," Food Control, vol. 106, p.106741, 2019.

[37] T. Yokono, S. Shimokawa, M. Yokono, and H. Hattori, "Infra-red spectroscopic study of structural change of liquid water induced by sunlight irradiation," Water, vol. 1, pp. 29-34, 2009.

[38] T.K. Leung, J.C. Yang, and Y.S. Lin, "The Physical, Chemical and Biological Effects by Room Temperature Ceramic Far‐infrared Ray Emitting Material Irradiated Water: A Pilot Study," Journal of the Chinese Chemical Society, vol. 59, no. 5, pp. 589-597, 2012.

[39] T. Leung, S. Lin, T. Yang, J. Yang, and Y. Lin, "The influence of ceramic far-infrared ray (cFIR) irradiation on water hydrogen bonding and its related chemo-physical properties," Hydrol Current Res, vol. 5, no. 174, p. 2, 2014.

[40] J. Liu, Y. Qin, S. Yuan, P. Gao, and Q. Nie, "Investigation on the mechanism of water activated via tourmaline powder," Journal of Molecular Liquids, vol. 332, p. 115854, 2021.

[41] M.J. Torija, N. Rozes, M. Poblet, J.M. Guillamón, and A. Mas, "Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae," International journal of food microbiology, vol. 80, no. 1, pp. 47-53, 2003.

[42] J. De Roos, and L. De Vuyst, "Acetic acid bacteria in fermented foods and beverages," Current opinion in biotechnology, vol. 49, pp. 115-119, 2018.

[43] T. Takeo, "Photometric evaluation and statistical analysis of tea infusion." Japan Agricultural Reasearch Quarterly, vol. 8, pp. 159-164, 1974.

[44] 劉德緯, "開發山苦瓜啤酒製程與苦瓜胜肽對糖尿病降血糖之探討," vol. 國立中央大學, 2020.

[45] 彭一芸, "探討醋酸菌及酵母菌共發酵對山苦瓜抑制黃嘌呤氧化活性之影響," vol. 國立中央大學, 2021.

[46] V.L. Singleton, R. Orthofer, and R.M. Lamuela-Raventós, "[14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent," Methods in enzymology, vol. 299, pp. 152-178, 1999.

[47] P. Molyneux, "The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity," Songklanakarin J sci technol, vol. 26, no. 2, pp. 211-219, 2004.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2021-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明