博碩士論文 107324011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:18.219.200.21
姓名 李稼鴻(Chia-Hung Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 電鍍(111)奈米雙晶銅在不同應力模式下的塑性變形機制研究
(Plastic deformation mechanism of nano-twinned Cu under different stress model)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-25以後開放)
摘要(中) 近年來,在半導體封裝領域,電鍍奈米雙晶銅因其能在不大幅影響電性的前提下去提升機械強度,使其逐漸受到重視;更有研究指出,奈米雙晶銅具有良好的熱穩定性及一定的電遷移抗性,讓雙晶銅材料在高頻高速的產品封裝領域佔有一席之地。本研究的第一部分為利用不同濃度的吉利丁添加劑製作出不同雙晶密度的電鍍奈米雙晶銅膜,進行拉伸性質研究,藉此實驗提出了柱狀雙晶結構的銅薄膜,在受到平行於基板的拉伸應力時,所發生的塑性變形過程。去雙晶區域內的柱狀雙晶結構會接續發生:聚結(coalescence)、晶粒尺寸縮小(grain-size reduction)及晶粒細化(grain refinement)等過程。而在此類雙晶薄膜在受到平行於基板的拉伸應力時,所發生的雙晶消失過程(de-twinning process),可分為兩個主要步驟:(1)壁架(ledge)結構的產生及(2)兩個反方向的壁架移動使雙晶結構消失。也證實薄膜的強度與雙晶界密度高度相關。我們的實驗結果也顯示具有較大雙晶界密度的電鍍奈米雙晶銅膜比具有較小雙晶界密度的電鍍奈米雙晶銅膜有更大的斷裂強度。第二部分闡述超高正向應力下,具有平行於基板雙晶結構銅的變形機制及塑性變形發生後,雙晶晶界處平行於雙晶晶界的疊差是如何產生的。差排以奈米雙晶銅柱頂端不平處為差排生成處,在起始超高應力下,以觀察不到的速度,在銅柱頂端發生超快速塑性變形,不平處在受到超高應力後,成為支點不移動,持續施加應力的情況下,支點間平面受應力後,發生彈性變形,形成彎曲輪廓(bending contour),彎曲平面應力環達到曲率極限時,由彈性變形轉為塑性變形,產生差排,塑性變形持續發生。藉由施密特定律(Schmid’s law)及雙湯普森四面體(double Thompson tetrahedron),我們可推斷出超高正向應力下,塑性變形發生後,雙晶晶界處平行於雙晶晶界的疊差是來自於30°肖克萊部分差排(Shockley partial dislocation)在雙晶晶界上的橫滑移(cross-slip)及接續產生的階梯狀解離差排(stair-rod dislocation dissociation)、60°全差排(perfect dislocation)及90°肖克萊部分差排在雙晶晶界上的橫滑移及其穿過(transmit across)雙晶晶界時,所產生的疊差。
摘要(英) In recent years, electroplating nano-twinned Cu has gradually attracted a very attention in the field of the package because it can improve the mechanical properties without greatly affecting the electrical properties. Some studies also have pointed out that nano-twinned Cu has good thermal stability and certain electromigration resistance, which makes nano-twinned Cu materials having a place in the field of high-frequency and high-speed product packaging. The first part of this study is to use different concentrations of gelatin additives to produce electroplated nano-twinned Cu films with different twin boundary densities, then, conduct tensile properties research. This experiment proposes a Cu film with a columnar twin crystal structure. When the tensile stress is parallel to the substrate, processes such as coalescence, grain-size reduction, and grain refinement will occur successively. When this type of Cu film with twin structure is subjected to tensile stress parallel to the substrate, the de-twinning process that occurs can be divided into two steps: (1) the ledge formation by the engagement of the dislocations with the twin boundaries and (2) the collapse of the ledges with the opposite twin-boundaries which make the twin structure disappear. It is also confirmed that the strength of the film is highly correlated with the twin boundary density. The electroplated nano-twinned Cu film with a larger twin boundary density has greater fracture strength than the electroplated nano-twinned Cu film with a smaller twin boundary density. The second part explains the deformation mechanism of Cu with twin structure parallel to the substrate under ultra-high normal stress and how the stacking faults parallel to the twin boundary at the twin boundary occurs after the plastic deformation. The dislocation takes the protrusions on the top of the pillar as the place where the dislocation is generated. Under the initial ultra-high stress, ultra-rapid plastic deformation occurs at the top of the Cu pillar at an unobservable speed. The protrusions are subjected to ultra-high stress. After that, it becomes a fulcrum without moving, and under the condition of continuous application of stress, the plane between the fulcrums undergoes elastic deformation after being stressed, forming a bend contour. When the bending plane reaches the curvature limit, the elastic deformation turns into plastic deformation. Using Schmid′s law and double Thompson tetrahedron, we can infer that under ultra-high normal stress, the stacking faults parallel to the twin boundary come from the cross-slip of the 30° Shockley partial dislocation on the twin boundary with the subsequent stair-rod dislocation dissociation, 60° perfect dislocation, 90° Shockley partial dislocation cross-slip onto the twin boundary and its transmission across the twin boundary.
關鍵字(中) ★ 電鍍
★ 雙晶銅
★ 塑性變形
★ 差排
關鍵字(英) ★ nano-twinned Cu
★ Plastic deformation
★ dislocation
★ electrodeposition
論文目次 中文摘要 i
Abstract ii
Table of Content v
List of figures vii
List of tables xi
Chapter 1: Introduction 1
1.1 Introduction of twin structure 1
1.1-1 Coincidence site lattice 1
1.1-2 Coherent twin boundary and incoherent twin boundary 3
1.2 Introduction of nano-twinned Cu 5
1.2-1 Fabrication method of nano-twinned Cu film 5
1.2-2 Characteristics of nano-twinned Cu 10
1.3 Plastic deformation mechanism of nano-twinned Cu 17
1.3-1 Schmid’s law 17
1.3-2 Interaction between dislocation and twin boundary 20
1.3-3 Plastic deformation of the nano-twinned Cu film under tensile test 23
1.3-4 Plastic deformation of the nano-twinned Cu pillar under compression test 24
Chapter 2: Motivation 26
Chapter 3: Experiment procedure 28
3.1 Fabrication of nano-twinned Cu sample 28
3.1-1 Nano-twinned Cu film with various density of twin boundary 28
3.1-2 Cu pillar with twin structure parallel to the substrate 30
3.2 Uniaxial tensile test for nano-twinned Cu film 33
3.3 Uniaxial compression test for nano-twinned Cu pillar 34
Chapter 4: Effect of de-twinning on tensile strength of nano-twinned Cu film 35
4.1 Microstructure of nano-twinned Cu film 35
4.2 Microstructure evolution of nano-twinned Cu film with tensile test 41
4.3 Tensile test of nano-twinned Cu film with different twin boundary density 47
Chapter 5: Plastic deformation of nano-twinned Cu pillar under ultra-high normal stress 52
5.1 Microstructure of the original and deformed nano-twinned Cu pillar 52
5.2 Microstructure evolution of nano-twinned Cu pillar under ultra-high normal stress 59
5.3 Plastic deformation mechanism of nano-twinned Cu pillar under ultra-high normal stress 63
Chapter 6: Summary 70
Reference: 72
參考文獻 [1] IKUHARA, Yuichi. "Grain boundary and interface structures in ceramics." Journal of the Ceramic Society of Japan 109.1271 (2001): S110-S120.
[2] Song, S. G., and G. T. Gray III. "Structural interpretation of the nucleation and growth of deformation twins in Zr and Ti—I. Application of the coincidence site lattice (CSL) theory to twinning problems in hcp structures." Acta metallurgica et materialia 43.6 (1995): 2325-2337.
[3] Du, Jinlong, et al. "Detwinning through migration of twin boundaries in nanotwinned Cu films under in situ ion irradiation." Science and Technology of advanced MaTerialS 19.1 (2018): 212-220.
[4] Motaman, S. Amir H., Franz Roters, and Christian Haase. "Anisotropic polycrystal plasticity due to microstructural heterogeneity: A multi-scale experimental and numerical study on additively manufactured metallic materials." Acta Materialia 185 (2020): 340-369.
[5] Kim, S. H., et al. "Grain boundary character distribution and intergranular corrosion behavior in high purity aluminum." Scripta materialia 44.5 (2001): 835-839.
[6] Joo, Soo‐Hyun, et al. "Beating thermal coarsening in nanoporous materials via high‐entropy design." Advanced Materials 32.6 (2020): 1906160.
[7] Tan, Lizhen, Todd R. Allen, and Jeremy T. Busby. "Grain boundary engineering for structure materials of nuclear reactors." Journal of nuclear materials 441.1-3 (2013): 661-666.
[8] Bieler, T. R., et al. "The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals." International Journal of Plasticity 25.9 (2009): 1655-1683.
[9] Eghlimi, Abbas, et al. "Evaluation of microstructure and texture across the welded interface of super duplex stainless steel and high strength low alloy steel." Surface and Coatings Technology 264 (2015): 150-162.
[10] Chen, X. H., L. Lu, and K. Lu. "Electrical resistivity of ultrafine-grained copper with nanoscale growth twins." Journal of applied physics 102.8 (2007): 083708.
[11] Wang, Guoyong, et al. "The origin of the ultrahigh strength and good ductility in nanotwinned copper." Materials Science and Engineering: A 527.16-17 (2010): 4270-4274.
[12] Lai, Yu-Chang, Po-Ching Wu, and Tung-Han Chuang. "Thermal stability of grain structure for Ag nanotwinned films sputtered with substrate bias." Materialia 20 (2021): 101215.
[13] Xu, Di, Hsin‐Ping Chen, and King-Ning Tu. "Improved Interconnect Properties For Nano‐Twinned Copper: Microstructure And Stability." AIP Conference Proceedings. Vol. 1300. No. 1. American Institute of Physics, 2010.
[14] Chen, Kuan-Chia, et al. "Stability of nanoscale twins in copper under electric current stressing." (2010): 066103.
[15] Shin, Yoon Ah, et al. "Nanotwin-governed toughening mechanism in hierarchically structured biological materials." Nature communications 7.1 (2016): 10772.
[16] Pineau, André, A. Amine Benzerga, and Thomas Pardoen. "Failure of metals III: Fracture and fatigue of nanostructured metallic materials." Acta Materialia 107 (2016): 508-544.
[17] Mirkhani, Hamidreza, and Shailendra P. Joshi. "Mechanism-based crystal plasticity modeling of twin boundary migration in nanotwinned face-centered-cubic metals." Journal of the Mechanics and Physics of Solids 68 (2014): 107-133.
[18] Fullman, R. L., and J. C. Fisher. "Formation of annealing twins during grain growth." Journal of Applied Physics 22.11 (1951): 1350-1355.
[19] Fullman, R. L. "Formation of annealing twins during grain growth." Journal of Applied Physics 21.10 (1950): 1069-1070.
[20] Fischer, F. D., et al. "Mechanical twins, their development and growth." European Journal of Mechanics-A/Solids 22.5 (2003): 709-726.
[21] Li, Sujie, et al. "Nano-scale twinned Cu with ultrahigh strength prepared by direct current electrodeposition." Materials Science and Engineering: A 758 (2019): 1-6.
[22] Wang, Yu-Sheng, et al. "An electroplating method for copper plane twin boundary manufacturing." Thin Solid Films 544 (2013): 157-161.
[23] Nemoto, Takenao, et al. "In situ observation of grain growth on electroplated Cu film by electron backscatter diffraction." Japanese journal of applied physics 48.6R (2009): 066507.
[24] Tseng, I-Hsin, et al. "Effect of thermal stress on anisotropic grain growth in nano-twinned and un-twinned copper films." Acta Materialia 206 (2021): 116637.
[25] Ma, E., et al. "Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper." Applied physics letters 85.21 (2004): 4932-4934.
[26] Chen, Yen-Chieh, and Chih Chen. "Study of nano-twinned Cu prepared by low-temperature electrodeposition and its thermal stability." 2016 11th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). IEEE, 2016.
[27] Lu, Lei, et al. "Ultrahigh strength and high electrical conductivity in copper." Science 304.5669 (2004): 422-426.
[28] Xu, Di, et al. "Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition." Applied Physics Letters 91.25 (2007): 254105.
[29] Xu, Di, et al. "In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper." Journal of Applied Physics 105.2 (2009): 023521.
[30] Hodge, A. M., Y. M. Wang, and T. W. Barbee Jr. "Mechanical deformation of high-purity sputter-deposited nano-twinned copper." Scripta materialia 59.2 (2008): 163-166.
[31] Hodge, A. M., Y. M. Wang, and T. W. Barbee Jr. "Large-scale production of nano-twinned, ultrafine-grained copper." Materials Science and Engineering: A 429.1-2 (2006): 272-276.
[32] Meudre, Charline, et al. "Adsorption of gelatin during electrodeposition of copper and tin–copper alloys from acid sulfate electrolyte." Surface and Coatings Technology 252 (2014): 93-101.
[33] Guo, Tianhao, et al. "Effects of gelatin, thiourea, and chloride ions on the nanostructure of copper film prepared by electrodeposition." 2022 23rd International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2022.
[34] V Li, Sujie, et al. "Nano-scale twinned Cu with ultrahigh strength prepared by direct current electrodeposition." Materials Science and Engineering: A 758 (2019): 1-6.
[35] Zhu, Qingsheng, et al. "Communication—Electrodeposition of nano-twinned Cu in void-free filling for blind microvia of high density interconnect." Journal of the Electrochemical Society 166.1 (2018): D3097.
[36] Sun, Fu-Long, et al. "Bottom–up electrodeposition of large-scale nanotwinned copper within 3D through silicon via." Materials 11.2 (2018): 319.
[37] Shen, Y. F., et al. "Tensile properties of copper with nano-scale twins." Scripta Materialia 52.10 (2005): 989-994.
[38] You, Z. S., L. Lu, and K. Lu. "Tensile behavior of columnar grained Cu with preferentially oriented nanoscale twins." Acta Materialia 59.18 (2011): 6927-6937.
[39] Liu, Tao-Chi, et al. "Eliminate Kirkendall voids in solder reactions on nanotwinned copper." Scripta Materialia 68.5 (2013): 241-244.
[40] Bishara, Hanna, et al. "Understanding grain boundary electrical resistivity in Cu: the effect of boundary structure." ACS nano 15.10 (2021): 16607-16615.
[41] Ando, Yoichi, et al. "Electrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductors." Physical review letters 88.13 (2002): 137005.
[42] Chen, Chang-Chih, et al. "Depth-dependent self-annealing behavior of electroplated Cu." Surface and Coatings Technology 320 (2017): 489-496.
[43] Chen, Kuan-Chia, et al. "Observation of atomic diffusion at twin-modified grain boundaries in copper." Science 321.5892 (2008): 1066-1069.
[44] Chen, Hsin-Ping, et al. "Optimization of the nanotwin-induced zigzag surface of copper by electromigration." Nanoscale 8.5 (2016): 2584-2588.
[45] Yue, L., H. Zhang, and D. Y. Li. "Defect generation in nano-twinned, nano-grained and single crystal Cu systems caused by wear: A molecular dynamics study." Scripta Materialia 63.11 (2010): 1116-1119.
[46] Chiu, Wei-Lan, et al. "Formation of nearly void-free Cu3Sn intermetallic joints using nanotwinned Cu metallization." Applied Physics Letters 104.17 (2014): 171902.
[47] V Huang, Cheng, et al. "Plastic deformation and hardening mechanisms of a nano-twinned cubic boron nitride ceramic." ACS Applied Materials & Interfaces 12.44 (2020): 50161-50175.
[48] Liu, Pei, et al. "Molecular dynamics simulation on the deformation mechanism of monocrystalline and nano-twinned TiN under nanoindentation." Materials Chemistry and Physics 252 (2020): 123263.
[49] Ni, S., et al. "The effect of dislocation density on the interactions between dislocations and twin boundaries in nanocrystalline materials." Acta materialia 60.6-7 (2012): 3181-3189.
[50] Pan, Hongjiang, Yue He, and Xiaodan Zhang. "Interactions between dislocations and boundaries during deformation." Materials 14.4 (2021): 1012.
[51] You, Zesheng, et al. "Plastic anisotropy and associated deformation mechanisms in nanotwinned metals." Acta Materialia 61.1 (2013): 217-227.
[52] Pan, Q. S., Q. H. Lu, and L. Lu. "Fatigue behavior of columnar-grained Cu with preferentially oriented nanoscale twins." Acta materialia 61.4 (2013): 1383-1393.
[53] Nibur, K. A., and D. F. Bahr. "Identifying slip systems around indentations in FCC metals." Scripta materialia 49.11 (2003): 1055-1060.
[54] Ng, K. S., and A. H. W. Ngan. "Breakdown of Schmid’s law in micropillars." Scripta Materialia 59.7 (2008): 796-799.
[55] Jin, Z-H., et al. "The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals." Scripta Materialia 54.6 (2006): 1163-1168.
[56] Jin, Z-H., et al. "Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals." Acta Materialia 56.5 (2008): 1126-1135.
[57] Zhu, Y. T., et al. "Dislocation–twin interactions in nanocrystalline fcc metals." Acta Materialia 59.2 (2011): 812-821.
[58] Chen, Zhiming, Zhaohui Jin, and Huajian Gao. "Repulsive force between screw dislocation and coherent twin boundary in aluminum and copper." Physical review B 75.21 (2007): 212104.
[59] Li, N., et al. "Twinning dislocation multiplication at a coherent twin boundary." Acta Materialia 59.15 (2011): 5989-5996.
[60] Wu, Z. X., Y. W. Zhang, and D. J. Srolovitz. "Deformation mechanisms, length scales and optimizing the mechanical properties of nanotwinned metals." Acta Materialia 59.18 (2011): 6890-6900.
[61] Rao, Satish I., et al. "Response surface for screw dislocation: Twin boundary interactions in FCC metals." Acta Materialia 195 (2020): 681-689.
[62] Wang, Y. B., M. L. Sui, and E. Ma. "In situ observation of twin boundary migration in copper with nanoscale twins during tensile deformation." Philosophical Magazine Letters 87.12 (2007): 935-942.
[63] De Hosson, Jeff TM, et al. "In situ TEM nanoindentation and dislocation-grain boundary interactions: a tribute to David Brandon." Journal of materials science 41 (2006): 7704-7719.
[64] Liu, Yue, et al. "In situ nanoindentation studies on detwinning and work hardening in nanotwinned monolithic metals." Jom 68 (2016): 127-135.
[65] Jang, Dongchan, et al. "Deformation mechanisms in nanotwinned metal nanopillars." Nature nanotechnology 7.9 (2012): 594-601.
[66] Shen, Yu-An, et al. "Nanotwin orientation on history-dependent stress decay in Cu nanopillar under constant strain." Nanotechnology 33.15 (2022): 155708.
[67] Pei, Linqing, et al. "Brittle versus ductile behaviour of nanotwinned copper: a molecular dynamics study." Acta Materialia 89 (2015): 1-13.
[68] Zeng, Zhi, et al. "Fracture in a thin film of nanotwinned copper." Acta Materialia 98 (2015): 313-317.
[69] Tschopp, M. A., and D. L. McDowell. "Asymmetric tilt grain boundary structure and energy in copper and aluminium." Philosophical Magazine 87.25 (2007): 3871-3892.
[70] Jeon, Jong Bae, and Gerhard Dehm. "Formation of dislocation networks in a coherent Cu Σ3 (1 1 1) twin boundary." Scripta Materialia 102 (2015): 71-74.
[71] Choi, In-Chul, et al. "Nanoindentation behavior of nanotwinned Cu: Influence of indenter angle on hardness, strain rate sensitivity and activation volume." Acta Materialia 61.19 (2013): 7313-7323.
[72] Wang, J., et al. "Detwinning mechanisms for growth twins in face-centered cubic metals." Acta Materialia 58.6 (2010): 2262-2270.
[73] Shute, C. J., et al. "Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins." Acta Materialia 59.11 (2011): 4569-4577.
[74] Zhu, Ting, and Huajian Gao. "Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling." Scripta Materialia 66.11 (2012): 843-848.
[75] Wang, Y. B., M. L. Sui, and E. Ma. "In situ observation of twin boundary migration in copper with nanoscale twins during tensile deformation." Philosophical Magazine Letters 87.12 (2007): 935-942.
[76] Molnár, Dávid, et al. "Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel." Materials Science and Engineering: A 759 (2019): 490-497.
[77] Ding, Jun, et al. "Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys." Proceedings of the National Academy of Sciences 115.36 (2018): 8919-8924.
[78] Maiwald, Lukas, et al. "Ewald sphere construction for structural colors." Optics express 26.9 (2018): 11352-11365.
[79] Van Landuyt, J., G. Van Tendeloo, and S. Amelinckx. "Phase transitions in In2Se3 as studied by electron microscopy and electron diffraction." physica status solidi (a) 30.1 (1975): 299-314.
[80] Dorcet, Vincent, and Gilles Trolliard. "A transmission electron microscopy study of the A-site disordered perovskite Na0. 5Bi0. 5TiO3." Acta Materialia 56.8 (2008): 1753-1761.
[81] Chen, Hanyuan, et al. "Transmission-electron-microscopy study on fivefold twinned silver nanorods." The Journal of Physical Chemistry B 108.32 (2004): 12038-12043.
[82] Bao, Yanjun, et al. "Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control." Light: Science & Applications 8.1 (2019): 95.
[83] Rodríguez-González, Benito, Isabel Pastoriza-Santos, and Luis M. Liz-Marzán. "Bending contours in silver nanoprisms." The Journal of Physical Chemistry B 110.24 (2006): 11796-11799.
[84] Blochwitz, C., and W. Tirschler. "Influence of texture on twin boundary cracks in fatigued austenitic stainless steel." Materials Science and Engineering: A 339.1-2 (2003): 318-327.
[85] de la Fuente, O. Rodríguez, et al. "Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunneling microscopy and atomistic simulations." Physical review letters 88.3 (2002): 036101.
[86] Queisser, H. J., and A. Goetzberger. "Microplasma breakdown at stair-rod dislocations in silicon." Philosophical Magazine 8.90 (1963): 1063-1066.
[87] Li, M., et al. "Molecular dynamics simulation of dislocation intersections in aluminum." Materials Science and Engineering: A 363.1-2 (2003): 234-241.
[88] Hansen, Niels, and D. Kuhlmann-Wilsdorf. "Low energy dislocation structures due to unidirectional deformation at low temperatures." Materials Science and Engineering 81 (1986): 141-161.
[89] Kuhlmann-Wilsdorf, D. "Theory of plastic deformation:-properties of low energy dislocation structures." Materials Science and Engineering: A 113 (1989): 1-41.
[90] Sainath, G., and B. K. Choudhary. "Molecular dynamics simulation of twin boundary effect on deformation of Cu nanopillars." Physics Letters A 379.34-35 (2015): 1902-1905.
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2023-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明