博碩士論文 107324015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:3.133.141.71
姓名 林柏伸(Po-Shen Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Poly(3-alkylthiothiophenes)(P3ATTs)高分子半導體應用於有機場效應電晶體:硫烷側鏈對於其性質影響
(Poly(3-alkylthiothiophenes)(P3ATTs)Semiconductor for Organic Field Effect Transistors:The Effect of Alkylthio Side Chain on Their Properties)
相關論文
★ 自組裝嵌段共聚高分子/小分子混成奈米浮閘極記憶體:元件製備及效能評估★ 硫碳鏈聯噻吩環小分子半導體及高介電常數TiOX/SiOX介電層製備低電壓場效應光電晶體元件
★ 高介電常數TiOX/SiOX介電層製備低電壓場效應 電晶體元件★ 利用可溶液製程之含硫碳鏈聯噻吩小分子製作高效能有機場效應電晶體
★ 以噴塗技術沉積有機半導體薄膜:形貌分析及其於有機場效應電晶體元件應用★ 利用溶液製程製作不同次結構之併環噻吩小分子高效能有機場效應電晶體
★ 利用超音波噴塗技術製備鈣鈦礦薄膜於太陽能 電池元件之應用★ 利用溶液剪切力塗佈法製作高效能DTTRQ小分子 N 型有機場效電晶體元件
★ 用於高性能n型有機薄膜晶體管的溶液 - 二亞甲基取代的醌基二炔基噻吩(DTDSTQ)基小分子★ 利用溶液剪切力塗佈法製備高分子與小分子混摻之有機場效電晶體元件
★ 利用兩步驟超音波噴塗技術製備平面型p-i-n結構鈣鈦礦太陽能電池元件之應用★ 透明氧化物薄膜電晶體與電晶體式記憶體之分析與應用
★ 以含硫碳鏈並?吩環小分子半導體材料利用溶液剪切力塗佈法製作高性能有機場效應電晶體★ 溶液剪切力 法製備醌型噻吩並異靛藍 (DTPQ) N型小分子 半 導體於有機場效應電晶 體 應用
★ 剪切力溶液製程應用於高效能有機薄膜電晶體:含硒碳鏈聯?吩小分子半導體材料★ 利用超音波噴塗技術製備混合有機陽離子鈣鈦礦 太陽能電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) Poly(3-alkylthiophenes) (P3ATs)因為其可溶液製程、可靈活調整的化學結構以及其優秀的電洞傳輸性能而被廣泛地運用於各種有機電子元件,在這些聚噻吩衍生物中又以poly(3-hexylthiophene) (P3HT)最具有代表性且被深入地研究,許多研究都指出立體規則度(regioregularity , R.R.)與分子量對於高分子堆疊及排列有很大的影響力,而這對於載子傳輸是很重要的。但是相對的較少有人研究R.R.及分子量對於其它具有側鏈官能基的P3ATs的影響,而完整且系統性的研究是需要的。
此外,將一硫元素加入烷基側鏈基已經被證明可以有效的對高R.R.的P3HT及其衍生物的固態結構進行微調。這裡我們合成並分析了poly(3-alkylthio-thiophene) (P3ATTs)這一系列的高分子半導體包括poly(3-hexylthiothiophene) (P3HTT) (P3HTT)、poly(3-decylthiothiophene) (P3DTT)與poly(3-(2-ethyl)hexylthiothiophene) (P3EHTT),並且探討了R.R.與分子量對於P3HTT的影響。透過將硫烷基測鏈取代烷基測鏈,π-π堆疊的距離從原本P3HT的3.88 Å縮近至P3HTT 的3.76 Å,而π-π堆疊的距離與主鏈的排列的方向性是決定元件效能的兩個最關鍵性的因素,因此溶液剪切力塗佈法被選擇用來製備高方向性高分子薄膜並應用於有機場效應電晶體,於P3HTT與P3DTT的電洞遷移率分別達到1.48×10-2 cm2 V-1 s-1與7.67×10-3 cm2 V-1 s-1。
摘要(英) Poly(3-alkylthiophenes) (P3ATs) have been used broadly in organic electronic application by virtue of its solution processability, tunable chemical structure and high hole mobility. Among these polythiophene derivatives, poly(3-hexylthiophene) (P3HT) is most representative and well-studied, and many studies revealed polymer regioregularity (R.R.) and molecular weight have an influence on molecular packing and ordering of polymers, which is important to charge transfer. However, there is less research about the effects of regioregularity or molecular weight on other P3ATs with functionalized sidechain, and the systematic research is needed.
Furthermore, alkyl sidechain substituent with a sulfur atom has been proven to enable fine tuning of the solid-state organization of the corresponding regioregular P3HT analogues. In this paper, we present the synthesis and characterization of a series of poly(3-alkylthiothiophene) (P3ATT)-based polymer semiconductors including poly(3-hexylthiothiophene) (P3HTT)、poly(3-decyl-thiothiophene) (P3DTT) and poly(3-(2-ethyl)hexylthiothiophene) (P3EHTT). P3HTT with various R.R. and molecular weights were also discussed. In this case, the π-π stacking distance successfully decreased from 3.88 Å to 3.76 Å by substituting hexyl sidechain by thiohexyl sidechain. Since both π-π interaction and backbone alignment are significant factors affecting charge transport behavior, unidirectional solution shearing method was applied to fabricate oriented polymer thin film for organic field effect transistor, reaching the mobility to 1.48×10-2 cm2 V-1 s-1 and 7.67×10-3 cm2 V-1 s-1 for P3HTT and P3DTT, respectively.
關鍵字(中) ★ 有機場效應電晶體
★ 高分子半導體
★ 溶液剪切力塗佈法
★ 硫烷基側鏈
關鍵字(英) ★ organic field effect transistor
★ polymer semiconductor
★ solution shearing process
★ alkyl-thio side chain
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 xii
一、緒論 1
1-1前言 1
1-2有機場效應電晶體 3
1-3有機半導體溶液製程 10
1-4聚噻吩高分子半導體材料 17
1-5高分子的排列與方向性 33
1-6高分子溶液預聚集 36
1-7研究動機 42
二、實驗細節 44
2-1實驗藥品 44
2-2實驗設備與裝置 46
2-3實驗方法 47
2-4儀器分析 49
三、結果與討論 52
3-1有機高分子半導體材料性質分析 52
3-2高分子溶液配方與預聚集 62
3-3有機場效應電晶體電性分析 68
3-4有機高分子薄膜形貌 73
3-5有機高分子半導體薄膜微結構分析 78
四、結論與未來展望 85
五、參考文獻 88
附錄 93
參考文獻 1. Paterson, A. F.; Singh, S.; Fallon, K. J.; Hodsden, T.; Han, Y.; Schroeder, B. C.; Bronstein, H.; Heeney, M.; McCulloch, I.; Anthopoulos, T. D., Recent Progress in High‐mobility Organic Transistors: A Reality Check. Adv. Mater. 2018, 30 (36), 1801079.
2. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J., Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene,(CH) x. J. Chem. Soc., Chem. Commun. 1977, (16), 578-580.
3. Guo, X.; Facchetti, A.; Marks, T. J., Imide and Amide-Functionalized Polymer Semiconductors. Chem. Rev. 2014, 114 (18), 8943-9021.
4. Zaumseil, J.; Sirringhaus, H., Electron and Ambipolar Transport in Organic Field-Effect Transistors. Chem. Rev. 2007, 107 (4), 1296-1323.
5. Diao, Y.; Shaw, L.; Bao, Z.; Mannsfeld, S. C., Morphology Control Strategies for Solution-Processed Organic Semiconductor Thin Films. Energy Environ. Sci. 2014, 7 (7), 2145-2159.
6. Lee, W. H.; Kim, D. H.; Jang, Y.; Cho, J. H.; Hwang, M.; Park, Y. D.; Kim, Y. H.; Han, J. I.; Cho, K., Solution-Processable Pentacene Microcrystal Arrays for High Performance Organic Field-Effect Transistors. Appl. phys. lett. 2007, 90 (13), 132106.
7. Li, H.; Tee, B. C.; Cha, J. J.; Cui, Y.; Chung, J. W.; Lee, S. Y.; Bao, Z., High-Mobility Field-Effect Transistors from Large-Area Solution-Grown Aligned C60 Single Crystals. J. Am. Chem. Soc. 2012, 134 (5), 2760-2765.
8. Chen, J.; Shao, M.; Xiao, K.; He, Z.; Li, D.; Lokitz, B. S.; Hensley, D. K.; Kilbey, S. M.; Anthony, J. E.; Keum, J. K., Conjugated Polymer-Mediated Polymorphism of A High Performance, Small-Molecule Organic Semiconductor with Tuned Intermolecular Interactions, Enhanced Long-Range Order, and Charge Transport. Chem. Mater. 2013, 25 (21), 4378-4386.
9. Shin, N.; Kang, J.; Richter, L. J.; Prabhu, V. M.; Kline, R. J.; Fischer, D. A.; DeLongchamp, D. M.; Toney, M. F.; Satija, S. K.; Gundlach, D. J., Vertically Segregated Structure and Properties of Small Molecule–Polymer Blend Semiconductors for Organic Thin‐Film Transistors. Adv. Funct. Mater. 2013, 23 (3), 366-376.
10. Yuan, Y.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C.; Chen, J.; Nordlund, D.; Toney, M. F.; Huang, J.; Bao, Z. J. N. c., Ultra-High Mobility Transparent Organic Thin Film Transistors Grown by an Off-Centre Spin-Coating Method. Nat. Commun. 2014, 5 (1), 1-9.
11. Qi, Z.; Zhang, F.; Di, C.-a.; Wang, J.; Zhu, D., All-Brush-Painted Top-Gate Organic Thin-Film Transistors. J. Mater. Chem. C 2013, 1 (18), 3072-3077.
12. Lin, X.; Klenk, R.; Wang, L.; Köhler, T.; Albert, J.; Fiechter, S.; Ennaoui, A.; Lux-Steiner, M. C., 11.3% Efficiency Cu (In, Ga)(S, Se) 2 Thin Film Solar Cells via Drop-on-Demand Inkjet Printing. Energy Environ. Sci. 2016, 9 (6), 2037-2043.
13. Chen, Y.; Li, X.; Xiao, Y.; Wang, S., Solution Processed Large-Scale Small Molecular Organic Field-Effect Transistors. Prog. Chem. 2017, 29 (4), 359-372.
14. Xu, J.; Wu, H.-C.; Zhu, C.; Ehrlich, A.; Shaw, L.; Nikolka, M.; Wang, S.; Molina-Lopez, F.; Gu, X.; Luo, S.; Zhou, D.; Kim, Y.-H.; Wang, G.-J. N.; Gu, K.; Feig, V. R.; Chen, S.; Kim, Y.; Katsumata, T.; Zheng, Y.-Q.; Yan, H.; Chung, J. W.; Lopez, J.; Murmann, B.; Bao, Z., Multi-Scale Ordering in Highly Stretchable Polymer Semiconducting Films. Nat. Mater. 2019, 18 (6), 594-601.
15. Tsumura, A.; Koezuka, H.; Ando, T., Macromolecular Electronic Device: Field‐Effect Transistor with a Polythiophene Thin Film. Appl. Phys. Lett. 1986, 49 (18), 1210-1212.
16. Zhou, E.; He, C.; Tan, Z. A.; Yang, C.; Li, Y., Effect of Side‐Chain End Groups on the Optical, Electrochemical, and Photovoltaic Properties of Side‐Chain Conjugated Polythiophenes. J Polym. Sci. Pol. Chem. 2006, 44 (16), 4916-4922.
17. Kline, R. J.; DeLongchamp, D. M.; Fischer, D. A.; Lin, E. K.; Richter, L. J.; Chabinyc, M. L.; Toney, M. F.; Heeney, M.; McCulloch, I., Critical Role of Side-Chain Attachment Density on the Order and Device Performance of Polythiophenes. Macromolecules 2007, 40 (22), 7960-7965.
18. Ho, V.; Boudouris, B. W.; Segalman, R. A., Tuning Polythiophene Crystallization Through Systematic Side Chain Functionalization. Macromolecules 2010, 43 (19), 7895-7899.
19. Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S., Structurally Ordered Polythiophene Nanoparticles for High‐Performance Organic Thin‐Film Transistors. Adv. Mater. 2005, 17 (9), 1141-1144.
20. Hamadani, B.; Gundlach, D.; McCulloch, I.; Heeney, M., Undoped Polythiophene Field-Effect Transistors with Mobility of 1 cm 2 V− 1 s− 1. Appl. Phys. Lett. 2007, 91 (24), 243512.
21. Heeney, M.; Bailey, C.; Genevicius, K.; Shkunov, M.; Sparrowe, D.; Tierney, S.; McCulloch, I., Stable Polythiophene Semiconductors Incorporating Thieno [2, 3-b] Thiophene. J. Am. Chem. Soc. 2005, 127 (4), 1078-1079.
22. Li, Y.; Wu, Y.; Liu, P.; Birau, M.; Pan, H.; Ong, B. S., Poly (2, 5‐bis (2‐thienyl)‐3, 6‐dialkylthieno [3, 2‐b] thiophene) s—High‐Mobility Semiconductors for Thin‐Film Transistors. Adv. Mater. 2006, 18 (22), 3029-3032.
23. Pan, H.; Wu, Y.; Li, Y.; Liu, P.; Ong, B. S.; Zhu, S.; Xu, G., Benzodithiophene Copolymer—A Low‐Temperature, Solution‐Processed High‐Performance Semiconductor for Thin‐Film Transistors. Adv. Funct. Mater. 2007, 17 (17), 3574-3579.
24. Fong, H. H.; Pozdin, V. A.; Amassian, A.; Malliaras, G. G.; Smilgies, D.-M.; He, M.; Gasper, S.; Zhang, F.; Sorensen, M., Tetrathienoacene Copolymers as High Mobility, Soluble Organic Semiconductors. J. Am. Chem. Soc. 2008, 130 (40), 13202-13203.
25. Li, J.; Qin, F.; Li, C. M.; Bao, Q.; Chan-Park, M. B.; Zhang, W.; Qin, J.; Ong, B. S., High-Performance Thin-Film Transistors from Solution-Processed Dithienothiophene Polymer Semiconductor Nanoparticles. Chem. Mater. 2008, 20 (6), 2057-2059.
26. Osaka, I.; Abe, T.; Shinamura, S.; Miyazaki, E.; Takimiya, K., High-Mobility Semiconducting Naphthodithiophene Copolymers. J. Am. Chem. Soc. 2010, 132 (14), 5000-5001.
27. Rieger, R.; Beckmann, D.; Pisula, W.; Steffen, W.; Kastler, M.; Müllen, K., Rational Optimization of Benzo [2, 1‐b; 3, 4‐b′] dithiophene‐Containing Polymers for Organic Field‐Effect Transistors. Adv. Mater. 2010, 22 (1), 83-86.
28. Wang, H.; Huang, J.; Uddin, M. A.; Liu, B.; Chen, P.; Shi, S.; Tang, Y.; Xing, G.; Zhang, S.; Woo, H. Y., Cyano-Substituted Head-to-Head Polythiophenes: Enabling High-Performance n-Type Organic Thin-Film Transistors. ACS Appl. Mater. Interfaces 2019, 11 (10), 10089-10098.
29. Chen, T. A.; Rieke, R. D., The First Regioregular Head-to-Tail Poly (3-hexylthiophene-2, 5-diyl) and a Regiorandom Isopolymer: Nickel Versus Palladium Catalysis of 2 (5)-bromo-5 (2)-(bromozincio)-3-hexylthiophene Polymerization. J. Am. Chem. Soc. 1992, 114 (25), 10087-10088.
30. McCullough, R. D.; Lowe, R. D., Enhanced Electrical Conductivity in Regioselectively Synthesized Poly (3-alkylthiophenes). J. Chem. Soc., Chem. Commun. 1992, (1), 70-72.
31. Loewe, R. S.; Khersonsky, S. M.; McCullough, R. D., A Simple Method to Prepare Head‐to‐Tail Coupled, Regioregular Poly (3‐alkylthiophenes) Using Grignard Metathesis. Adv. Mater. 1999, 11 (3), 250-253.
32. Sirringhaus, H.; Brown, P.; Friend, R.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B.; Spiering, A.; Janssen, R. A.; Meijer, E.; Herwig, P., Two-Dimensional Charge Transport in Self-Organized, High-Mobility Conjugated Polymers. Nature 1999, 401 (6754), 685-688.
33. Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Liu, J.; Frechet, J. M., Controlling the Field‐Effect Mobility of Regioregular Polythiophene by Changing the Molecular Weight. Adv. Mater. 2003, 15 (18), 1519-1522.
34. Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F. P.; Stingelin, N.; Smith, P.; Toney, M. F.; Salleo, A., A General Relationship Between Disorder, Aggregation and Charge Transport in Conjugated Polymers. Nat. Mater. 2013, 12 (11), 1038-1044.
35. Mei, J.; Bao, Z., Side Chain Engineering in Solution-Processable Conjugated Polymers. Chemistry of Materials 2014, 26 (1), 604-615.
36. Russ, B.; Glaudell, A.; Urban, J. J.; Chabinyc, M. L.; Segalman, R. A., Organic Thermoelectric Materials for Energy Harvesting and Temperature Control. Nat. Rev. Mater. 2016, 1 (10), 1-14.
37. Park, Y. D.; Kim, D. H.; Jang, Y.; Cho, J. H.; Hwang, M.; Lee, H. S.; Lim, J. A.; Cho, K., Effect of Side Chain Length on Molecular Ordering and Field-Effect Mobility in Poly (3-alkylthiophene) Transistors. Org. Electron. 2006, 7 (6), 514-520.
38. Lee, H. S.; Cho, J. H.; Cho, K.; Park, Y. D., Alkyl Side Chain Length Modulates the Electronic Structure and Electrical Characteristics of Poly(3-alkylthiophene) Thin Films. J. Phys. Chem. C 2013, 117 (22), 11764-11769.
39. Bridges, C. R.; Ford, M. J.; Thomas, E. M.; Gomez, C.; Bazan, G. C.; Segalman, R. A., Effects of Side Chain Branch Point on Self Assembly, Structure, and Electronic Properties of High Mobility Semiconducting Polymers. Macromolecules 2018, 51 (21), 8597-8604.
40. Lee, M. Y.; Dharmapurikar, S.; Lee, S. J.; Cho, Y.; Yang, C.; Oh, J. H., Regular H-Bonding-Containing Polymers with Stretchability up to 100% External Strain for Self-Healable Plastic Transistors. Chem. Mater. 2020, 32 (5), 1914-1924.
41. Yao, K.; Chen, L.; Chen, X.; Chen, Y., Self-Organized Hole Transport Layers Based on Polythiophene Diblock Copolymers for Inverted Organic Solar Cells with High Efficiency. Chem. Mater. 2013, 25 (6), 897-904.
42. Wang, B.; Watt, S.; Hong, M.; Domercq, B.; Sun, R.; Kippelen, B.; Collard, D. M., Synthesis, Properties, and Tunable Supramolecular Architecture of Regioregular Poly(3-alkylthiophene)s with Alternating Alkyl and Semifluoroalkyl Substituents. Macromolecules 2008, 41 (14), 5156-5165.
43. Huang, F.; Wu, H.; Cao, Y., Water/Alcohol Soluble Conjugated Polymers as Highly Efficient Electron Transporting/Injection Layer in Optoelectronic Devices. Chem. Soc. Rev. 2010, 39 (7), 2500-2521.
44. Shao, M.; He, Y.; Hong, K.; Rouleau, C. M.; Geohegan, D. B.; Xiao, K., A Water-Soluble Polythiophene for Organic Field-Effect Transistors. Polym. Chem. 2013, 4 (20), 5270-5274.
45. Shaw, L.; Yan, H.; Gu, X.; Hayoz, P.; Weitz, R. T.; Kaelblein, D.; Toney, M. F.; Bao, Z., Microstructural Evolution of the Thin Films of a Donor–Acceptor Semiconducting Polymer Deposited by Meniscus-Guided Coating. Macromolecules 2018, 51 (11), 4325-4340.
46. Aiyar, A. R.; Hong, J. I.; Nambiar, R.; Collard, D. M.; Reichmanis, E., Tunable Crystallinity in Regioregular Poly (3‐Hexylthiophene) Thin Films and Its Impact on Field Effect Mobility. Adv. Funct. Mater. 2011, 21 (14), 2652-2659.
47. Kleinhenz, N.; Persson, N.; Xue, Z.; Chu, P. H.; Wang, G.; Yuan, Z.; McBride, M. A.; Choi, D.; Grover, M. A.; Reichmanis, E., Ordering of Poly (3-hexylthiophene) in Solutions and Films: Effects of Fiber Length and Grain Boundaries on Anisotropy and Mobility. Chem. Mater. 2016, 28 (11), 3905-3913.
48. McBride, M.; Persson, N.; Keane, D.; Bacardi, G.; Reichmanis, E.; Grover, M. A., A Polymer Blend Approach for Creation of Effective Conjugated Polymer Charge Transport Pathways. ACS Appl. Mater. Interfaces 2018, 10 (42), 36464-36474.
49. Bielecka, U.; Lutsyk, P.; Janus, K.; Sworakowski, J.; Bartkowiak, W., Effect of Solution Aging on Morphology and Electrical Characteristics of Regioregular P3HT FETs Fabricated by Spin Coating and Spray Coating. Org. Electron. 2011, 12 (11), 1768-1776.
50. Chang, M.; Choi, D.; Fu, B.; Reichmanis, E., Solvent Based Hydrogen Bonding: Impact on Poly (3-hexylthiophene) Nanoscale Morphology and Charge Transport Characteristics. ACS nano 2013, 7 (6), 5402-5413.
51. Chang, M.; Lee, J.; Kleinhenz, N.; Fu, B.; Reichmanis, E., Photoinduced Anisotropic Supramolecular Assembly and Enhanced Charge Transport of Poly (3‐hexylthiophene) Thin Films. Adv. Funct. Mater. 2014, 24 (28), 4457-4465.
52. Yuan, Y.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C. B.; Chen, J.; Nordlund, D.; Toney, M. F.; Huang, J.; Bao, Z., Ultra-High Mobility Transparent Organic Thin Film Transistors Grown by an Off-centre Spin-Coating Method. Nat. Commun. 2014, 5 (1), 3005.
53. Sim, K.; Rao, Z.; Kim, H.-J.; Thukral, A.; Shim, H.; Yu, C., Fully Rubbery Integrated Electronics from High Effective Mobility Intrinsically Stretchable Semiconductors. Sci. Adv. 2019, 5 (2), eaav5749.
54. Peeters, H.; Couturon, P.; Vandeleene, S.; Moerman, D.; Leclère, P.; Lazzaroni, R.; De Cat, I.; De Feyter, S.; Koeckelberghs, G., Influence of The Regioregularity on the Chiral Supramolecular Organization of Poly (3-alkylsulfanylthiophene)s. RSC Adv. 2013, 3 (10), 3342-3351.
55. Wang, P.; Jeon, I.; Lin, Z.; Peeks, M. D.; Savagatrup, S.; Kooi, S. E.; Van Voorhis, T.; Swager, T. M., Insights into Magneto-Optics of Helical Conjugated Polymers. J. Am. Chem. Soc. 2018, 140 (20), 6501-6508.
56. Huo, L.; Zhou, Y.; Li, Y., Alkylthio‐Substituted Polythiophene: Absorption and Photovoltaic Properties. Macromol. Rapid Commun. 2009, 30 (11), 925-931.
57. Cui, C.; Wong, W.-Y.; Li, Y., Improvement of Open-Circuit voltage and Photovoltaic Properties of 2D-Conjugated Polymers by Alkylthio Substitution. Energy Environ. Sci. 2014, 7 (7), 2276-2284.
58. Bin, H.; Zhang, Z.-G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y., Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency. J. Am. Chem. Soc. 2016, 138 (13), 4657-4664.
59. Li, R.; Zhang, X.; Zhu, P.; Ng, D. K.; Kobayashi, N.; Jiang, J., Electron-Donating or-Withdrawing Nature of Substituents Revealed by the Electrochemistry of Metal-Free Phthalocyanines. Inorg. Chem. 2006, 45 (5), 2327-2334.
60. Spano, F. C.; Silva, C., H-and J-Aggregate Behavior in Polymeric Semiconductors. Annu. Rev. Phys. Chem. 2014, 65, 477-500.
61. Clark, J.; Chang, J.-F.; Spano, F. C.; Friend, R. H.; Silva, C., Determining Exciton Bandwidth and Film Microstructure in Polythiophene Films Using Linear Absorption Spectroscopy. Appl. Phys. Lett. 2009, 94 (16), 117.
指導教授 劉振良(Cheng-Liang Liu) 審核日期 2020-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明