博碩士論文 107324029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.222.161.241
姓名 洪啟瀚(Chi-Han,Hung)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氫氧化鎳/奈米碳管/碳纖維複合電極之製備及其於尿素溶液中電極動力學之研究
(Fabrication of Ni(OH)2 / Carbon Nanotubes / Carbon Fiber Composite Electrode and Its Electode Kinetics in Urea Solution)
相關論文
★ 無黏合劑鉻摻雜鋰鎳錳氧/碳纖維高電壓複合正極與奈米碳管/碳纖維複合負極應用於鋰離子電池之研究★ 鈣鈦礦釔鐵氧化物/碳纖維複合電極應用於有機汙水處理之研究
★ 碳黑改質對高電壓鋰離子電池正極電化學表現影響之研究★ 電化學輔助紫外光/氯程序應用於水楊酸降解之研究
★ 以廢棄太陽能電池製作Si/SiOx/Al2O3碳纖維複合式負極應用於鋰離子電池之研究★ 部分碳化聚乙烯吡咯烷酮黏著劑應用於高電壓鋰離子電池正極之研究
★ 釔鐵氧化物/氧化鈰光陽極應用於有機汙水處理★ 水熱法合成之Li1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/醋酸纖維素複合型固態電解質 應用於鋰離子電池之研究
★ 含水深共熔溶劑系統電化學製備之奈米氫氧化鎳/鎳/碳纖維氈複合電極應用於水分解製氫★ 以回收太陽能板之矽基材料結合石墨製備Si/SiOx/C複合負極應用於鋰離子電池之研究
★ 原位聚合生成雙鋰鹽系統類凝膠聚(1,3-二氧戊環)電解質應用於鋰離子電池之研究★ 以含水深共熔溶劑電化學系統製備奈米鎳銅合金/碳纖維氈複合電極應用於水分解製氫
★ 以有機金屬框架結合乙醇輔助水熱法製備鐵摻雜鋰鎳錳氧高電壓正極 應用於鋰離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要

氫氧化鎳/奈米碳管/碳纖維複合電極之製備及其於尿素溶液中電極動力學之研究

在許多食品加工的副產品、農業施肥使用的肥料或是家庭使用的洗衣劑都含有尿素的汙染物,當其被排放到河川、大海會造成大自然的優養化。本研究主要透過一步驟電泳共沉積法將Ni(OH)2觸媒材料以及奈米碳管合成在碳纖維表面,並藉由後續的水熱反應過程製備出碳纖維複合電極材料,並探討碳纖維複合電極材料在電解尿素的表現行為。
從FE-SEM的分析結果可以得知,碳纖維的前處理過程可以有效去除其外層的環氧樹脂。而從XPS的分析結果可以得知,奈米碳管的前處理過程能使其表面功能化,並且表面的含氧官能基的比例與酸洗時間呈現正相關。而這樣的特性被證實是有助於後續碳纖維複合電極材料的合成。在XRD的分析結果可以得知,水熱反應的過程可以有效提升Ni(OH)2觸媒材料的結晶性。
藉由FE-SEM、EDS-Mapping、TGA、Raman分析結果證實了碳纖維複合電極材料已經被成功合成出來。從循環伏安法的分析結果可以明顯觀測到反應峰值電流與掃描速率的根次方的變化呈線性關係,證實了電解反應系統為擴散控制機制。在Tafel極化曲線的結果得知,碳纖維複合電極材料的交換電流密度為0.056 (A/m2)。從UV-vis的分析結果可以得知,尿素的官能基特徵峰有減少證實了其有被降解。本研究已經成功利用簡單、低成本的製程合成出氫氧化鎳奈米碳管複合電極材料,並能夠比傳統電極材料所需較少的過電位應用在尿素降解反應。

關鍵字 : 奈米碳管、碳纖維、氫氧化鎳、複合電極、尿素。
摘要(英) Abstract

Fabrication of Ni(OH)2 / Carbon Nanotubes / Carbon Fiber Composite Electrode and Its Electrode Kinetics in Urea Solution

Many by-products of food processing, fertilizers used in agricultural fertilization, or laundry detergent used in households contain urea pollutants. When it is discharged into river and sea, it will cause eutrophication of nature.This research mainly synthesizes Ni(OH)2 catalyst material and carbon nanotubes on the surface of carbon fiber by one-step electrophoretic co-deposition method, and prepares carbon fiber composite electrode material through the subsequent hydrothermal reaction process, and discusses carbon fiber composite electrode The performance of the material in the electrolysis of urea.
According to the analysis results of FE-SEM, the pretreatment process of carbon fiber can effectively remove the epoxy resin on the outer layer. From the analysis results of XPS, it can be known that the pretreatment process of carbon nanotubes can functionalize the surface, and the proportion of oxygen-containing functional groups on the surface is positively correlated with the pickling time. And such characteristics have been proved to help the subsequent synthesis of carbon fiber composite electrode materials. According to the XRD analysis results, the hydrothermal reaction process can effectively improve the crystallinity of Ni(OH)2 catalyst materials.
The analysis results of FE-SEM, EDS-Mapping, TGA, and Raman confirm that the carbon fiber composite electrode material has been successfully synthesized. From the analysis results of cyclic voltammetry, it can be clearly observed that there is a linear relationship between the peak current of the reaction and the root of the scan rate, which proves that the electrolysis reaction system is a diffusion control mechanism. According to the results of the Tafel polarization curve, the exchange current density of the carbon fiber composite electrode material is 0.056 (A/m2). From the UV-vis analysis results, it can be known that the reduction of the characteristic peaks of the functional groups of urea confirms its degradation. In this study, a simple and low-cost process has been successfully used to synthesize nickel hydroxide carbon nanotube composite electrode materials, which can be used in urea degradation reactions with less overpotential than traditional electrode materials.

Keywords: Carbon nanotubes, carbon fibers, nickel hydroxide, composite electrodes, urea.
關鍵字(中) ★ 奈米碳管
★ 碳纖維
★ 氫氧化鎳
★ 複合電極
★ 尿素
關鍵字(英) ★ carbon nanotubes
★ carbon fibers
★ nickel hydroxide
★ composite electrodes
★ urea
論文目次 總目錄
摘要 I
ABSTRACT II
誌謝 III
總目錄 IV
圖目錄 IX
表目錄 XXI
公式表 XXIII
CHAPTER.1 緒論 - 1 -
1.1 前言 - 1 -
1.1.1 歷史背景 - 1 -
1.1.2 氫能發展 - 3 -
1.2 材料簡介 - 5 -
1.3 研究目的和動機 - 6 -
CHAPTER.2 文獻回顧 - 7 -
2.1 碳纖維複合材料之開發與應用 - 7 -
2.2 陽極電化學處理尿素廢水 - 9 -
2.3 廢水處理方式 - 12 -
2.3.1 分離作用 - 12 -
2.3.2 轉化作用 - 12 -
2.3.3 再利用作用 - 13 -
2.4 產氫方式 - 14 -
2.4.1 化石原料重組 - 14 -
2.4.2 煤炭氧化 - 14 -
2.4.3 工業的副產物 - 16 -
2.4.4 水的電解 - 16 -
2.5 動力學探討 - 17 -
CHAPTER.3 實驗方法與步驟 - 18 -
3.1 實驗藥品與儀器 - 18 -
3.2 實驗設備 - 20 -
3.3 實驗設計 - 21 -
3.3.1 碳纖維前處理製備 - 22 -
3.3.2 氧化奈米碳管製備 - 23 -
3.4 活性材料的製備 - 25 -
3.5 電極電化學表現行為探討 - 28 -
3.5.1 循環伏安法 (Cyclic voltammetry : CV) - 28 -
3.5.2 電極動力學探討 - 28 -
3.5.3 線性掃描伏安法 (Linear sweep voltammetry : LSV) - 29 -
3.5.4 電位電化學阻抗譜 (Potentio electrochemical impedance spectroscopy : PEIS) - 29 -
3.5.5 雙極式電解系統 - 29 -
3.5.6 計時電流法 (Chronoamperometry : CA) - 30 -
3.5.7 紫外可見光光譜儀 (Ultraviolet visible light spectrophotometer : UV-VIS) - 30 -
3.6 材料的鑑定分析 - 31 -
3.6.1 高解析度場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope :FE-SEM) - 31 -
3.6.2 霍氏轉換紅外光譜儀 (Fourier-Transform Infrared Spectrometer : FT-IR) - 32 -
3.6.3 熱分析設備 (Thermogravimetric analysis : TGA) - 33 -
3.6.4 拉曼光譜儀 (Raman spectroscope : Raman) - 34 -
3.6.5 X-ray光繞射儀 (X-ray diffractometer : XRD) - 35 -
3.6.6 化學分析影像能譜儀 (Electron spectroscopy for chemical analysis system:ESCA) - 37 -
3.6.7 電壓電流儀測量 (Voltage and current meter:SP-150) - 38 -
3.6.8 紫外可見光光譜儀 (UV-Vis spectrophotometer) - 47 -
CHAPTER.4 結果與討論 - 50 -
4.1 碳纖維前處理的製備分析 - 50 -
4.1.1 表面形貌與顯微結構的FE-SEM分析 - 50 -
4.1.2 表面官能基的FT-IR定性分析 - 51 -
4.1.3 材料熱穩定性的TGA分析 - 53 -
4.2 氧化奈米碳管的製備分析 - 55 -
4.2.1 表面官能基的XPS分析 - 55 -
4.2.2 材料缺陷的Raman分析 - 63 -
4.2.3 材料熱穩定性的TGA分析 - 65 -
4.3 觸媒材料的製備分析 - 67 -
4.3.1 表面形貌與顯微結構的FESEM分析 - 67 -
4.3.2 奈米碳管表面生長的層狀氫氧化物的機制探討 - 69 -
4.3.3 表面元素的EDS mapping分析 - 70 -
4.3.4 材料晶相的XRD分析定性 - 74 -
4.3.5 材料熱穩定性的TGA分析 - 78 -
4.3.6 材料晶相的Raman分析定性 - 82 -
4.3.7 複合電極材料的負載量分析 - 83 -
4.4 電極的電化學表現行為 - 86 -
4.4.1 循環伏安法的電化學分析 - 86 -
4.4.2 電極的動力學探討 - 92 -
4.4.3 Tafel極化曲線的計算 - 95 -
4.4.4 線性掃描伏安法 - 97 -
4.4.5 PEIS的阻抗分析 - 100 -
4.4.6 計時電流法 - 104 -
4.5 UV-VIS分析 - 105 -
4.6 複合電極材料效能評估 - 110 -
CHAPTER.5 結論 - 111 -
CHAPTER.6未來展望 - 113 -
參考文獻 - 114 -
APPENDICES - 125 -
參考文獻 參考文獻
〔1〕R. Ding, L. Qi, M. Jia and H. Wang, Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation, Nanoscale, (2014), 6, 1369-1376.
〔2〕R. Lan, S. Tao and J. T. S. Irvine, A direct urea fuel cell – power from fertiliser and waste, Energy Environ. Sci., (2010), 3, 438–441.
〔3〕D. Wang, W. Yan and G. G. Botte, Exfoliated nickel hydroxide nanosheets for urea electrolysis, Electrochem. Commun, (2011), 13, 1135–1138.
〔4〕C. Bao, Q. Niu, Z. A. Chen etal, Ultrathin nickel-metal–organic framework nanobelt based electrochemical sensor for the determination of urea in human body fluids, RSC Advances, (2019), 9, 29474-29481.
〔5〕T. W. Chou, L. Gao, E. T. Thostenson, Z. Zhang and J. H. Byun, An assessment of the science and technology of carbon nanotube-based fibers and Composites, Compos. Sci. Technol., (2010), 70, 1-19.
〔6〕S. Rahmanian, K. S. Thean, A. R. Suraya, M. A. Shazed, M. A. Mohd Salleh and H. M. Yusoff, Carbon and glass hierarchical fibers: Influence of carbon nanotubes on tensile, flexural and impact properties of short fiber reinforced composites, Materials Design, (2013), 43, 10-16.
〔7〕Y. Kong, T. Qiu and J. Qiu, Fabrication of novel micro–nano carbonous composites based on self-made hollow activated carbon fibers, Appl. Surf. Sci., (2013), 265, 352-357.
〔8〕H. Qian, A. Bismarck, E. S. Greenhalgh and M. S. P. Shaffer, Carbon nanotube grafted carbon fibres: A study of wetting and fibre fragmentation, Compos. Part A Appl., Sci. Manuf., (2010), 41, 1107-1114.
〔9〕A. G. Osorio and C. P. Bergmann, Effect of surface area of substrates aiming the optimization of carbon nanotube production from ferrocene, Appl. Surf. Sci., (2013), 264, 794- 800.
〔10〕K. Rana, G. Kucukayan Dogu and E. Bengu, Growth of vertically aligned carbon nanotubes over self-ordered nano-porous alumina films and their surface properties, Appl. Surf. Sci., (2012), 258, 7112-7117.
〔11〕W. Xia, J. H. Johannes, H. Bitter, D. Su, J. Qian and M. Muhler, Iron impregnation on the amorphous shell of vapor grown carbon fibers and the catalytic growth of secondary nanofibers, Diam. Relat. Mater., (2009), 18, 13-19.
〔12〕P. Agnihotri, S. Basu and K. K. Kar, Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites, Carbon, (2011), 49, 3098-3106.
〔13〕T. Takasaki, K. Nishimura, T. Mukai, T. Iwaki, K. Tsutsumi and T. Sakai, Fiber-Type Ni(OH)2 Electrode for Nickel-Metal Hydride Battery: Super High-Rate Charge/Discharge and Long Cycle-Life Performances, J. Electrochem. Soc., (2012), 159, A1891-A1896.
〔14〕T. Takasaki, K. Nishimura, T. Mukai, T. Iwaki, K. Tsutsumi and T. Sakai, Fiber-Type Ni(OH)2 Electrode with α/γ Phase Transformation: High-Capacity and High-Voltage Performances of Nickel-Metal Hydride Battery, J. Electrochem. Soc., (2013), 160, A564 A568.
〔15〕J. Yao, K. Nishimura, T. Mukai et al, Development of Binder Free Fiber-Type Li-Ni-Mn-O Cathode with High-Voltage Stability for Lithium-Ion Battery, ECS Electrochem. Lett., (2012), 1, A83-A86.
〔16〕J. Yao, T. Takasaki, K. Nishimura et al, Electrochemistry, X-ray Diffraction Characterization and Battery Performances of Fiber-type Li-Mn-O Electrode for Li-ion Battery , (2014), 82 2, 109-112.
〔17〕J. Yao, T. Takasaki, K. Nishimura et al, J. Electrochem. Soc., (2013), 160, A980-A 984.
〔18〕Y. H. Liu, T. Takasaki, K. Nishimura et al, Development of lithium ion battery using fiber-type lithium-rich cathode and carbon anode materials, J. Power Sources, (2015), 290, 153-158.
〔19〕Y. H. Liu, T. Takasaki, K. Nishimura et al, Preparation of Fiber-Type Cathode and Its Electrode Characteristics for Sodium Ion Battery, J. Electrochem. Soc., (2014), 161, A1194-A1199.
〔20〕Y. H. Liu, T. Takasaki, K. Nishimura, et al, Electrode Performance and Structural Characterization of Fiber-Type Cathode for Sodium Ion Battery, J. Electrochem. Soc., (2014), 161, A2054-A2059.
〔21〕Y. H. Liu, H. H. Lin and Y. J. Tai, Binder-free carbon fiber-based lithium-nickel-manganese-oxide composite cathode with improved electrochemical stability against high voltage: Effects of composition on electrode performance, J Alloys Compd., (2018), 735, 580-587.
〔22〕G. G. Botte, US Patent, (2009) Application No. 0095636 A1.
〔23〕D. A. Daramola, D. Singh and G. G. Botte, Dissociation Rates of Urea in the Presence of NiOOH Catalyst: A DFT Analysis, J. Phys. Chem. A, (2010), 114, 11513-11521.
〔24〕R. L. King and G. G. Botte, Investigation of multi-metal catalysts for stable hydrogen production via urea electrolysis, J. Power Sources, (2011), 196, 9579-9584.
〔25〕A. T. Miller, B. L. Hassler and G. G. Botte, Rhodium electrodeposition on nickel electrodes used for urea electrolysis, J. Appl. Electrochem., (2012), 42, 925-934.
〔26〕W. Y an, D. Wang and G. G. Botte, Electrochemical decomposition of urea with Ni-based catalysts, Appl. Catal. B: Environ., (2012), 127, 221-226.
〔27〕D. Wang, W. Yan, S. H. Vijapur and G. G. Botte, Enhanced electrocatalytic oxidation of urea based on nickel hydroxide nanoribbons, J. Power Sources , (2012), 217, 498-502.
〔28〕V. Vedharathinam and G. G. Botte, Direct evidence of the mechanism for the electro-oxidation of urea on Ni(OH)2 catalyst in alkaline medium, Electrochim. Acta, (2013), 108 660-665.
〔29〕M. A. Abdelkareem, Y. A. Haj, M. Alajami etal, Ni-Cd carbon nanofibers as an effective catalyst for urea fuel cell, J. Environ. Chem. Eng. , (2018), 6, 332-337.
〔30〕Y. Tong, P. Chen,M. Zhang, Oxygen Vacancies Confined in Nickel Molybdenum Oxide Porous Nanosheets for Promoted Electrocatalytic Urea Oxidation, ACS Catal., (2018), 8, 1−7.
〔31〕M. Wu, J. Xu, Nickel-cobalt oxide nanocages derived from cobalt-organic frameworks as electrode materials for electrochemical energy storage with redox electrolyte, Electrochim Acta, (2019), 319, 31-40.
〔32〕E. Sum, M. Skyllas-Kazacos, A study of the V(II)/V(III) Redox Couple for Redox flow Cell applications, Journal of Power Sources, (1985), 15, 179-190.
〔33〕S. Eibl, Observing Inhomogeneity of Plastic Components in Carbon Fiber Reinforced Polymer Materials by ATR-FTIR Spectroscopy in the Micrometer Scale, J. Compos. Mater.,(2008), 12, 1231-1246.
〔34〕L. Yao, M. Li, Q. Wu et al, Comparison of sizing effect of T700 grade carbon fiber on interfacial properties of fiber/BMI and fiber/epoxy, Appl. Surf. Sci,, (2012), 326-333.
〔35〕C.L. Chiang, C.C. M. Ma, Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol–gel method, Eur. Polym.J., (2002), 38, 2219~2224.
〔36〕Y. C. Chiang, W.H. Lin, Y. C Chang, The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation, Appl. Surf. Sci., (2011), 6, 2401-2410.
〔37〕A. G. Osorio, I. C. L. Silveira, V. L. Bueno, C. P. Bergmann, Appl. Surf. Sci., (2008), 5, 2485-2489.
〔38〕A. Pistone, C. Milone,, E. Piperopoulos et al, H2SO4/HNO3/HCl—Functionalization and its effect on dispersion of carbon nanotubes in aqueous media, J. Exp Nanosci, (2012), 6, 5054-5060.
〔39〕A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, et al, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett, (2006), 97, 187401.
〔40〕D. Yoon, H. Moon, Y. W. Son et al, Interference effect on Raman spectrum of graphene on SiO2 /Si, Phys. Rev. B, (2009), 80, 125422.
〔41〕I. Calizo, D. Teweldebrhan, W. Bao etal, Spectroscopic raman nanometrology of graphene and graphene multilayers on arbitrary Substrates, J. Phys. Conf. Ser., (2008), 109, 1-4.
〔42〕C. Lin, Z. Gao, F. Zhang, J. Yang, B. Liu, J. Jin, In-situ Growth of Single-Layered α-Ni(OH)2 Nanosheets on Carbon Cloth for High-Efficient Electrocatalytic Urea Oxidation, J. Mater. Chem. A, (2018), 6, 13867-13873.
〔43〕H. Fang, S. Zhang, One-Step Synthesis of Ni/Ni(OH)2@Multiwalled Carbon Nanotube Coaxial Nanocable Film For High Performance Supercapacitors, Electrochim Acta, (2014), 125, 427–434.
〔44〕M. S. Wu, R. Y. Ji, Y. R. Zheng, Nickel hydroxide electrode with a monolayer of nanocup arrays as an effective electrocatalyst for enhanced electrolysis of urea, Electrochim. Acta, (2014), 20, 194-199.
〔45〕J. Zhao, J. Chen, S. Xu et al, Hierarchical NiMn Layered Double Hydroxide/Carbon Nanotubes Architecture with Superb Energy Density for Flexible Supercapacitors , Adv. Funct. Mater., (2014), 20, 2938-2946.
〔46〕M. Aghazadeh, M. Ghaemi, B. Sabour, S. Dalvand, Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors, J. Electrochem. Soc, (2014), 18, 1569–1584.
〔47〕P. M. Hannula, J. Aromaa, B. P. Wilson, D. Janas , K. Koziol, Observations of copper deposition on functionalized carbon nanotube films, Electrochim. Acta, (2017), 232, 495-504.
〔48〕A. Delahaye-vidal, M. Figlarz, Textural and structural studies on nickel hydroxide electrodes. II. Turbostratic nickel (II) hydroxide submitted to electrochemical redox cycling, J. Appl Electrochem., (1987), 17, 589-599.
〔49〕D. S. Hall, D. J. Lockwood, C. Bock and B. R. MacDougall, Nickel hydroxides and related materials: a review of their structures, synthesis and properties, Proc.R. Soc. A. Math. Phys. Eng. Sci., (2014), 471, 857–792.
〔50〕Michael Rajamathi,a P. Vishnu Kamatha and Ram Seshadrib, Polymorphism in nickel hydroxide: role of interstratification, J. Mater. Chem., (2000), 10, 503-506.
〔51〕J. L. Bantignies,, S. Deabate,, A. Righi, S. Rols, et al, New Insight into the Vibrational Behavior of Nickel Hydroxide and Oxyhydroxide Using Inelastic Neutron Scattering, Far/Mid-Infrared and Raman Spectroscopies, J. Phys. Chem. C, (2008), 112, 2193-2201.
〔52〕D. S. Hall,, D. J. Lockwood, S. Poirier et al, Raman and Infrared Spectroscopy of α and β Phases of Thin Nickel Hydroxide Films Electrochemically Formed on Nickel, J. Phys. Chem. A, (2012), 116, 6771–6784.
〔53〕D. S. Hall,, D. J. Lockwood, S. Poirier et al, Applications of in Situ Raman Spectroscopy for Identifying Nickel Hydroxide Materials and Surface Layers during Chemical Aging, ACS Appl. Mater.Interfaces, (2014), 5, 3141-3149.
〔54〕M. S. Wu, G. W. Lin and R. S. Yang, J. Power Sources, Hydrothermal growth of vertically-aligned ordered mesoporous nickel oxide nanosheets on three-dimensional nickel framework for electrocatalytic oxidation of urea in alkaline medium, (2014), 272, 711-718.
〔55〕J. Zhang, H. Zou, Q. Qing et al, Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes, J. Phys. Chem., (2003), 107, 3712–3718.
〔56〕D. Liu ,T. Liu, L. Zhang et al, High-performance urea electrolysis toward less energy-intensive electrochemcial hydrogen production using a bifunctional catalyst electrode, J. Mater. Chem. A, (2017), 5, 3208-3213.
〔57〕R. L. King and G. G. Botte, Investigation of multi-metal catalysts for stable hydrogen production via urea electrolysis, J. Power Sources, (2011), 196, 9579- 9584.
〔58〕B. K. Boggs, R. L. King and G. G. Botte, Urea electrolysis: direct hydrogen production from urine, Chem. Commun., (2009), 32, 4859-4861.
〔59〕D. Liu, T. Liu, L. Zhang, et al, High-performance urea electrolysis toward less energy-intensive electrochemcial hydrogen production using a bifunctional catalyst electrode, J. Mater. Chem. A, (2013), 5, 3208-3213.
〔60〕L. Bian, Q. Du, M. Luo etal, Monodisperse nickel nanoparticles supported on multi-walls carbon nanotubes as an effective catalyst for the electro-oxidation of urea, Int. J. Hydrog. Energy, 42, (2017), 25244-25250.
〔61〕G. Madhurambal, M. Mariappan, S. C. Mojumdar, TG–DTA, UV and FTIR spectroscopic studies of urea–thiourea mixed crystal, J Therm Anal Calorim, (2010), 100, 853–856.
〔62〕R. A. Abdel Hameed and S. S. Medany, Enhanced electrocatalytic activity of NiO nanoparticles supported on graphite planes towards urea electro-oxidation in NaOH solution, Int. J. Hydrogen Energy, (2017), 42, 24117-24130.
〔63〕Y. P. Chen, B. Liu, H. T. Lian, Preparation and Application of Urea Electrochemical Sensor Based on Chitosan Molecularly Imprinted Films, Electroanalysis, (2011), 23, 1454–1461.
指導教授 劉奕宏(Yi-Hung, Liu) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明