博碩士論文 107324030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.135.246.8
姓名 郭彥伸(Yen-Shen Kuo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鈣鈦礦釔鐵氧化物/碳纖維複合電極應用於有機汙水處理之研究
(Study of Perovskite YFeO3/Carbon Fiber Composite Electrode for Organic Wastewater Treatment)
相關論文
★ 氫氧化鎳/奈米碳管/碳纖維複合電極之製備及其於尿素溶液中電極動力學之研究★ 無黏合劑鉻摻雜鋰鎳錳氧/碳纖維高電壓複合正極與奈米碳管/碳纖維複合負極應用於鋰離子電池之研究
★ 碳黑改質對高電壓鋰離子電池正極電化學表現影響之研究★ 電化學輔助紫外光/氯程序應用於水楊酸降解之研究
★ 以廢棄太陽能電池製作Si/SiOx/Al2O3碳纖維複合式負極應用於鋰離子電池之研究★ 部分碳化聚乙烯吡咯烷酮黏著劑應用於高電壓鋰離子電池正極之研究
★ 釔鐵氧化物/氧化鈰光陽極應用於有機汙水處理★ 水熱法合成之Li1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/醋酸纖維素複合型固態電解質 應用於鋰離子電池之研究
★ 含水深共熔溶劑系統電化學製備之奈米氫氧化鎳/鎳/碳纖維氈複合電極應用於水分解製氫★ 以回收太陽能板之矽基材料結合石墨製備Si/SiOx/C複合負極應用於鋰離子電池之研究
★ 原位聚合生成雙鋰鹽系統類凝膠聚(1,3-二氧戊環)電解質應用於鋰離子電池之研究★ 以含水深共熔溶劑電化學系統製備奈米鎳銅合金/碳纖維氈複合電極應用於水分解製氫
★ 以有機金屬框架結合乙醇輔助水熱法製備鐵摻雜鋰鎳錳氧高電壓正極 應用於鋰離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 水是人類不可或缺的資產,然而如果被有害的化學物質污染,水資源將無法妥善利用,其中工廠排放的廢水通常含有複雜且有害的有機化合物,可以藉由污水處理程序以獲得乾淨的水源。關於污水處理,已經有諸多研究證實可以降解廢水中的有機污染物。例如,鈣鈦礦材料由於其優異的光催化活性,在污水處理的應用上,呈現優異的結果。如果將鈣鈦礦材料結合適當的集電體基材,則可以誘導其電催化效果。在本研究中,我們嘗試利用具有三維網絡結構且導電的碳纖維作為集電體基材與鈣鈦礦材料結合,製備鈣鈦礦/碳纖維複合電極,應用於有機污水處理。
本實驗透過修飾溶膠凝膠程序製備鈣鈦礦/碳纖維電極。首先將數種硝酸鹽和檸檬酸藉由溶膠凝膠法獲得YFeO3先驅物,再將YFeO3先驅物以不同目標溫度進行鍛燒,形成粉末狀YFeO3。最後將YFeO3粉末塗佈於碳纖維上,製備出複合電極。
用X射線繞射分析儀(XRD),熱重分析儀(TGA)和掃描式電子顯微鏡(SEM)分析了複合材料的性能。此外透過由複合電極組成的光電催化系統來進行有機污水處理。根據特性分析實驗結果顯示,碳纖維經由前處理程序可將表面環氧樹脂除去以提高導電性;YFeO3具有良好結晶性且傾向形成團聚的多孔性結構;複合電極則證實YFeO3成功地塗佈在碳纖維上。汙水處理應用實驗結果顯示,YFeO3光催化在可見光下經過120分鐘後的去除效率為51%;複合電極光電催化的最佳條件為0.75 mM FeSO4、25℃、pH 3.0、可見光光源,去除效率經過30分鐘後達到96%,擬二級反應動力常數為0.0387 L mg-1 min-1。藉由電化學阻抗譜分析得知,較低的電荷轉移阻抗可以有效提升有機污水的去除效率。
摘要(英) Water is an indispensable asset for human; however, it immediately becomes unavailable if contaminated by harmful chemical substances. Particularly, industrial wastewater composed of complicated chemical compounds usually accounts for the serious issue. With regard to wastewater treatment, many methods have been proved to be able to degrade organic pollutants. For example, perovskite materials can be applied on organic wastewater treatment due to their photocatalytic reactivity. If perovskite materials are further integrated with a proper electrical conductor, their electrocatalytic effect can be induced. In this study, we try to utilize carbon fibers (CFs), which possesses three-dimensional electrically conductive network, as current collectors to combine with perovskite materials, making a perovskite/CF electrode for organic wastewater treatment.
For the experiment, we prepared the perovskite/CF electrode through a modified sol-gel process. First, YFeO3 precursors were made by several kinds of nitrate and citric acid with sol-gel method. Then, YFeO3 precursors experienced a calcination process with different temperatures as a parameter, forming a powder-type product. Finally, we coated the YFeO3 powders on carbon fibers to make the composite electrode.
X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) were used to analyze the composite material properties. In addition, a photo-electrocatalytic system composed of the perovskite/CF electrode was established to carry out the organic wastewater treatment. Based on the analyzed results, YFeO3 possessed a good crystallinity and they tended to form aggregates with porous structure; it is also confirmed that YFeO3 successfully deposit on the carbon fibers, forming the composite electrode. As for the wastewater treatment, the removal efficiency can achieve 51% through a 120-min YFeO3 photocatalysis; the YFeO3/CF composite electrode exhibits a favorable photo-electrocatalytic activity of 96% at 0.75 mM FeSO4, 25℃ and pH 3.0 under visible light irradiation after a 30-min treatment, and rate constant k is calculated as 0.0387 Lmg-1min-1. According to electrochemical impedance spectroscopy (EIS), the composite electrode effectively degrade organic pollutants due to smaller charge transfer resistance.
關鍵字(中) ★ 鈣鈦礦材料
★ 複合電極
★ 光電催化
★ 有機污水
★ 電芬頓
關鍵字(英) ★ perovskite materials
★ composite electrode
★ photo-electrocatalysis
★ organic waste water
★ electro-Fenton
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 viii
表目錄 xii
一、 緒論 1
1-1 前言 1
1-2 研究目的 2
二、 文獻回顧 3
2-1 高級氧化程序 3
2-2 光催化反應 4
2-2-1 光觸媒簡介 4
2-2-2 二氧化鈦光觸媒 8
2-3 鈣鈦礦光觸媒 11
2-3-1 鈣鈦礦材料簡介 11
2-3-2 鈣鈦礦材料應用於汙水處理文獻回顧 12
2-4 電解氧化程序 15
2-5 電芬頓程序 17
2-5-1 芬頓程序 17
2-5-2 電芬頓程序 19
2-6 複合材料 21
2-6-1 複合材料簡介 21
2-6-2 碳纖維 22
2-7 有機汙染物 24
三、 實驗方法 27
3-1 實驗架構 27
3-2 實驗材料與設備 29
3-2-1 實驗材料 29
3-2-2 實驗設備 31
3-3 實驗方法與步驟 32
3-3-1 碳纖維前處理 32
3-3-2 YFeO3鈣鈦礦合成 32
3-3-3 RB5檢量線繪製 33
3-3-4 YFeO3鈣鈦礦光催化實驗 33
3-3-5 YFeO3/CF複合電極製備 34
3-3-6 YFeO3/CF複合電極(光)電催化實驗 34
3-4 分析儀器介紹 36
3-4-1 X射線繞射分析儀(X-ray Diffraction, XRD) 37
3-4-2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 38
3-4-3 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 39
3-4-4 傅立葉轉換紅外光譜儀(Fourier-Transform Infrared Spectroscopy, FTIR) 39
3-4-5 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 40
3-4-6 熱重分析儀(Thermogravimetric Analyzer, TGA) 40
3-4-7 紫外光-可見光分光光譜儀(Ultraviolet-Visible Spectroscopy, UV-VIS) 41
3-4-8 交流阻抗儀 42
四、 結果與討論 43
4-1 碳纖維前處理分析 43
4-1-1 SEM影像分析 43
4-1-2 FTIR光譜分析 45
4-1-3 熱重曲線分析 46
4-2 YFeO3鈣鈦礦光觸媒分析 47
4-2-1 X射線繞射圖譜分析 47
4-2-2 表面形貌及微結構分析 49
4-2-3 熱重曲線分析 51
4-2-4 X射線光電子能圖譜分析 52
4-3 YFeO3鈣鈦礦光催化特性分析 60
4-3-1 紫外光下YFeO3鈣鈦礦光催化特性分析 60
4-3-2 YFO-700於紫外光和可見光下光催化特性分析 61
4-3-3 可見光下YFO-700和TiO2光催化特性分析 62
4-4 YFeO3/CF複合電極分析 63
4-4-1 X射線繞射圖譜分析 63
4-4-2 熱重曲線分析 64
4-4-3 表面形貌分析 66
4-5 YFeO3/CF複合電極光電催化特性分析 67
4-5-1 YFeO3/CF複合電極電催化特性分析 67
4-5-2 不同溶液pH值光電催化特性分析 68
4-5-3 不同溫度光電催化特性分析 69
4-5-4 不同FeSO4濃度光電催化特性分析 70
4-5-5 不同光源光電催化特性分析 71
4-5-6 光電催化反應機制分析 72
4-5-7 光電催化反應動力學分析 74
4-5-8 電化學阻抗譜分析 77
五、 結論與建議 79
5-1 結論 79
5-2 建議 80
六、 參考文獻 81
附錄 90
參考文獻 [1] P. Muthirulan, M. Meenakshisundararam and N. Kannan, "Beneficial Role of ZnO Photocatalyst Supported with Porous Activated Carbon for the Mineralization of Alizarin Cyanin Green Dye in Aqueous Solution," Journal of Advanced Research, vol. 4, pp. 479-484, 2013.
[2] A. Malathi, J. Madhavan, M. Ashokkumar and P. Arunachalam, "A Review on BiVO4 Photocatalyst: Activity Enhancement Methods for Solar Photocatalytic Applications," Applied Catalysis A: General, vol. 555, pp. 47-74, 2018.
[3] K. Chung, "Azo Dyes and Human Health: A Review," Journal of Environmental Science and Health, Part C, vol. 34, pp. 233-261, 2016.
[4] W. Z. Tang, Z. Zhang, H. An, M. O. Quintana and D. F. Torres, "TiO2/UV Photodegradation of Azo Dyes in Aqueous Solutions," Environmental Technology, vol. 18, pp. 1-12, 1997.
[5] M. Khaki, M. Shafeeyan, A. Raman and W. Daud, "Evaluating the Efficiency of Nano-sized Cu Doped TiO2/ZnO Photocatalyst under Visible Light Irradiation," Journal of Molecular Liquids, vol. 258, pp. 354-365, 2018.
[6] P. S. Tang, H. F. Chen, F. Cao, G. X. P. Pan and Z. Chen, "Magnetically Recoverable and Visible-light-driven Nanocrystalline YFeO3 Photocatalysts," Catalysis Science & Technology, vol. 1, pp. 1145-1148, 2011.
[7] O. Iglesias, F. A. Fernandez de Dios, E. Rosales, M. Pazos and M. A. Sanroman, "Optimisation of Decolourisation and Degradation of Reactive Black 5 Dye under Electro-Fenton Process Using Fe Alginate Gel Beads," Environmental Science and Pollution Research, vol. 20, pp. 2172-2183, 2013.
[8] M. daiem, J. Rivera-Utrilla, R. Ocampo-Pérez, J. Méndez-Díaz and M. Sánchez-Polo, "Environmental Impact of Phthalic Acid Esters and Their Removal from Water and Sediments by Different Technologies - A Review," Journal of Environmental Management, vol. 109, pp. 164-178, 2012.
[9] Simon Parsons, Advanced Oxidation Processes for Water and Wastewater Treatment, IWA Publishing, ISBN: 1-84339-017-5, 2005.
[10] A. Kudo and Y. Miseki, "Heterogeneous Photocatalyst Materials for Water Splitting," Chemical Society Reviews, vol. 38, pp. 253-278, 2009.
[11] M. Chong, B. Jin, C. Chow and C. Saint, "Recent Developments in Photocatalytic Water Treatment Technology: A Review," Water Research, vol. 44, pp. 2997-3027, 2010.
[12] S. Lee and S. Park, "TiO2 Photocatalyst for Water Treatment Applications," Journal of Industrial and Engineering Chemistry, vol. 19, pp. 1761-1769, 2013.
[13] S. Kumar, S. Karthikeyan and A. Lee, "g-C3N4-based Nanomaterials for Visible Light-driven Photocatalysis," Catalysts, vol. 8, 2018.
[14] D. Robert and S. Malato, "Solar Photocatalysis: A Clean Process for Water Detoxification," Science of The Total Environment, vol. 291, pp. 85-97, 2002.
[15] A. Bott, "Electrochemistry of Semiconductors," Current Separations, vol. 17, pp. 87-91, 1998.
[16] U. G. Akpan and B. H. Hameed, "Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2-based Photocatalysts," Journal of Hazardous Materials, vol. 170, pp. 520-529, 2009.
[17] J. Haggerty, L. Schelhas, D. Kitchaev, J. Mangum, L. Garten, W. Sun, K. Stone, J. Perkins, M. Toney, G. Ceder, D. Ginley, B. Gorman and J. Tate, "High-fraction Brookite Films from Amorphous Precursors," Scientific Reports, vol. 7, 2017.
[18] S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy and V. Murugesan, "Sonophotolytic Degradation of Azo Dye Reactive Black 5 in an Ultrasound/UV/Ferric System and the Roles of Different Organic Ligands," Solar Energy Materials and Solar Cells, vol. 77, pp. 65-82, 2003.
[19] Marc De Graef and Michael E. McHenry, Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry 2nd Edition, Cambridge University Press, ISBN: 978-1-107-00587-7, 2012.
[20] P. Kanhere and Z. Chen, "A Review on Visible Light Active Perovskite-based Photocatalysts," Molecules, vol. 19, pp. 19995-20022, 2014.
[21] S. Thirumalairajan, K. Girija, N. Hebalkar, D. Mangalaraj, C. Viswanathan and N. Ponpandian, "Shape Evolution of Perovskite LaFeO3 Nanostructures: A Systematic Investigation of Growth Mechanism, Properties and Morphology Dependent Photocatalytic Activities," RSC Advances, vol. 3, pp. 7549-7561, 2013.
[22] F. Zou, Z. Jiang, X. Qin, Y. Zhao, L. Jiang, J. Zhi, T. Xiao and P. Edwards, "Template-free Synthesis of Mesoporous N-doped SrTiO3 Perovskite with High Visible-light-driven Photocatalytic Activity," Chemical Communications, vol. 48, pp. 8514-8516, 2012.
[23] S. Yin, H. Tian, Z. Ren, X. Wei, C. Chao, J. Pei, X. Li, G. Xu, G. Shen and G. Han, "Octahedral-shaped Perovskite Nanocrystals and Their Visible-light Photocatalytic Activity," Chemical Communications, vol. 50, pp. 6027-6030, 2014.
[24] S. Fu, H. Niu, Z. Tao, J. Song, C. Mao, S. Zhang, C. Chen and D. Wang, "Low Temperature Synthesis and Photocatalytic Property of Perovskite-type LaCoO3 Hollow Spheres," Journal of Alloys and Compounds, vol. 576, pp. 5-12, 2013.
[25] 張博荀, H2O2/Fe2+化學氧化法處理反應性染料-BlackB之研究, 國立成功大學: 碩士論文, 民國93年.
[26] 彭筱琪, 運用媒介物光電化學氧化法降解磺胺類抗生素及探討氫氧自由基生成之研究, 弘光科技大學: 碩士論文, 民國107年.
[27] M. Lucas and J. Peres, "Decolorization of the Azo Dye Reactive Black 5 by Fenton and Photo-Fenton Oxidation," Dyes and Pigments, vol. 71, pp. 236-244, 2006.
[28] C. Wang, J. Hu, W. Chou and Y. Kuo, "Removal of Color from Real Dyeing Wastewater by Electro-Fenton Technology Using a Three-dimensional Graphite Cathode," Journal of Hazardous Material, vol. 152, pp. 601-606, 2008.
[29] 林志平, 以電芬頓技術處理無電電鍍鎳廢液之研究, 國立成功大學: 碩士論文, 民國96年.
[30] Rodolfo Morales Ibarra, Carbon Fiber Recovery Using Subcritical and Supercritical Fluids for Chemical Recycling of Thermoset Composite Materials, Universidad Autónoma de Nuevo León: Thesis, 2014.
[31] M. Suzuki, "Activated Carbon Fiber: Fundamentals and Applications," Carbon, vol. 32, pp. 577-586, 1994.
[32] X. Huang, "Fabrication and Properties of Carbon Fibers," Materials, vol. 2, pp. 2369-2403, 2009.
[33] Deborah D. L. Chung, Carbon Fiber Composites, Heinemann, ISBN: 978-0-08-050073-7, 1994.
[34] C. Gu, S. Xiong, Z. Zhong, Y. Wang and W. Xing, "A Promising Carbon Fiber-based Photocatalyst with Hierarchical Structure for Dye Degradation," RSC Advances, vol. 7, pp. 22234-22242, 2017.
[35] H. Deng, Z. P. Mao, H. Xu, L. P. Zhang, Y. Zhong and X. F. Sui, "Synthesis of Fibrous LaFeO3 Perovskite Oxide for Adsorption of Rhodamine B," Ecotoxicology and Environmental Safety, vol. 168, pp. 35-44, 2019.
[36] M. A. Rauf, M. A. Meetani and S. Hisaindee, "An Overview on the Photocatalytic Degradation of Azo Dyes in the Presence of TiO2 Doped with Selective Transition Metals," Desalination, vol. 276, pp. 13-27, 2011.
[37] C. Bradu, L. Frunza, N. Mihalche, S. M. Avramescu, M. Neata and I. Udrea, "Removal of Reactive Black 5 Azo Dye from Aqueous Solutions by Catalytic Oxidation Using CuO/Al2O3 and NiO/Al2O3," Applied Catalysis B-Environmental, vol. 96, pp. 548-556, 2010.
[38] T. Zhou, T. T. Lim and X. H. Wu, "Sonophotolytic degradation of azo dye reactive black 5 in an ultrasound/UV/ferric system and the roles of different organic ligands," Water Research, vol. 45, pp. 2915-2924, 2011.
[39] B. Farizoglu, B. A. Fil, S. Uzuner, S. Bicakci, E. Er and E. N. Kara, "Reactive Black 5 Removal with Electro-oxidation Method Using Ti/IrO2/RuO2 Anode and Stainless Steel Cathode," International Journal of Electrochemical Science, vol. 13, pp. 3288-3296, 2018.
[40] S. Ma, W. Liu, Y. Zhao, Z. Yan and N. Gao, "Curing Behavior and Thermal Properties of Autocatalytic Cycloaliphatic Epoxy," Journal of Macromolecular Science, Part A, vol. 49, pp. 81-84, 2012.
[41] M. Wang, T. Wang, S. Song, M. Ravi, R. Liu and S. Ji, "Effect of Calcination Temperature on Structural, Magnetic and Optical Properties of Multiferroic YFeO3 Nanopowders Synthesized by a Low Temperature Solid-state Reaction," Ceramics International, vol. 43, pp. 10270-10276, 2017.
[42] P. Tang, H. Sun, H. Chen and F. Cao, "Hydrothermal Processing-assisted Synthesis of Nanocrystalline YFeO3 and its Visible-light Photocatalytic Activity," Current Nanoscience, vol. 8, pp. 64-67, 2012.
[43] M. Ismael, E. Elhaddad, D. Taffa and M. Wark, "Synthesis of Phase Pure Hexagonal YFeO3 Perovskite as Efficient Visible Light Active Photocatalyst," Catalysts, vol. 7, 2017.
[44] John F. Moulder, William F. Stickle, Peter E. Sobol and Kenneth D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Division, ISBN: 0-9648124-1-X, 1992.
[45] B. Nagrare, S. Kekade, B. Thombare, R. Reddy and S. Patil, "Hyperfine Interaction, Raman and Magnetic Study of YFeO3 Nanocrystals," Solid State Communications, vol. 280, pp. 32-38, 2018.
[46] M. Wang and T. Wang, "Structural, Magnetic and Optical Properties of Gd and Co Co-doped YFeO3 Nanopowders," Materials, vol. 12, 2019.
[47] F. Abdel-Rahman, B. Okeremgbo, F. Alhamadah, S. Jamadar, K. Anthony and M. A. Saleh, "Caenorhabditis Elegans as a Model to Study the Impact of Exposure to Light Emitting Diode (LED) Domestic Lighting," Journal of Environmental Science and Health, Part A, vol. 52, pp. 433-439, 2017.
[48] J. Acero, F. Benitez, F. Real and A. Leal, "Degradation of p-hydroxyphenylacetic Acid by Photoassisted Fenton Reaction," Water Science & Technology, vol. 44, pp. 31-38, 2001.
[49] A. Khataee, V. Vatanpour and A. Ghadim, "Decolorization of CI Acid Blue 9 Solution by UV/Nano-TiO2, Fenton, Fenton-like, Electro-Fenton and Electrocoagulation Processes: A Comparative Study," Journal of Hazardous Materials, vol. 161, pp. 1225-1233, 2009.
[50] U. Patel, J. Ruparelia and M. Patel, "Electrocoagulation Treatment of Simulated Floor-wash Containing Reactive Black 5 Using Iron Sacrificial Anode," Journal of Hazardous Materials, vol. 197, pp. 128-136, 2011.
[51] H. Y. Shu, M. C. Chang and H. J. Fan, "Decolorization of Azo Dye Acid Black 1 by the UV/H2O2 Process and Optimization of Operating Parameters," Journal of Hazardous Materials, vol. 113, pp. 201-208, 2004.
[52] X. Ding, Z. H. Ai and L. Z. Zhang, "A Dual-cell Wastewater Treatment System with Combining Anodic Visible Light Driven Photoelectro-catalytic Oxidation and Cathodic Electro-Fenton Oxidation," Separation and Purification Technology, vol. 125, pp. 103-110, 2014.
指導教授 劉奕宏(Yi-Hung Liu) 審核日期 2020-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明