博碩士論文 107324035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.12.162.179
姓名 趙于皞(Yu-Hao Chao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討COSMO-SAC-dsp模型中分散項和組合項之效應
相關論文
★ 預測固體溶質於超臨界二氧化碳添加共溶劑系統之溶解度★ 碳酸二乙酯與低碳醇類於常壓下之汽液相平衡
★ 探討Peng-Robinson+COSMOSAC狀態方程式中分散項與溫度之關係★ 探討分散項之溫度函數與體積參數之修正對PR+COSMOSAC於相平衡預測之影響
★ 預測有機物與二氧化碳雙成份系統之固液氣三相平衡★ 常壓下乙酸酯類之雙成份混合物汽液相平衡
★ 以第一原理計算鋰嵌入與擴散於具氧空缺之二氧化鈦結構★ 探討不同量子化學方法對PR+COSMOSAC狀態方程式應用於預測純物質及混合流體相行為之影響
★ 預測固體溶質於超臨界二氧化碳中的溶解度★ 鋯金屬有機框架材料之碳氫氣體吸附與分離預測
★ 甲基水楊酸異構物於超臨界二氧化碳中之溶解度量測★ 原料藥與水楊酸衍生物於超臨界二氧化碳中之溶解度量測
★ 以第一原理計算探討鋰於鈮摻雜二氧化鈦之嵌入與擴散路徑★ 第一原理計算探討藍磷烯異質結構用於鋰離子電池負極材料之特性
★ 以第一原理計算探討鋰離子於鐵摻雜磷酸鋰鈷之塊材與表面附近之擴散路徑★ 利用分子結構快速估算藥物與染料分子於超臨界二氧化碳中之溶解度
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-6-30以後開放)
摘要(中) 熱力學性質與流體相平衡對化工產業而言是相當重要的資訊,一般而言可以透過實驗量測或是熱力學模型估算來提供所需的熱力學數據。在過去的研究中,COSMO-SAC-dsp模型已被證明可以用來估算相平衡數據,如氣液相平衡、液液相平衡、無限稀釋活性係數等。COSMO-SAC-dsp模型中,分子間的作用力是利用量子化學計算所得到的分子表面電荷估算,因此不存在著參數缺失的問題。COSMO-SAC-dsp模型中活性係數的計算可分為下面三項貢獻:剩餘項(residual term)、分散項(dispersion term)和組合項(combinatorial term)。本研究目標系統性的探討COSMO-SAC-dsp使用不同分散項和組合項之效應,因此將剩餘項固定不動,比較四種組合項模型與三種分散項模型,其中分散項模型中更進一步探討不同溫度函數的作用力參數對模型精確度的效應。
本研究利用440個雙成份氣液相平衡系統與2291個雙成份無限稀釋活性係數之實驗點探討活性係數模型的準確度,結果發現組合項選用COSMO-SAC-dsp模型中所使用的Staverman-Guggenheim模型,並利用不考慮溫度影響的TCLAC模型(theoretically correct liquid activity coefficient model,一滿足配位數守恆之活性係數模型)來考慮分散項,可以在預設雙成份系統氣液相平衡與無限稀釋活性係數中獲得類似於COSMO-SAC-dsp模型的精確度。
摘要(英) Thermodynamic properties and fluid phase equilibria are important information for the design of chemical engineering processes. Such information can generally be obtained from experiment or estimated from thermodynamic models. In pervious study, COSMO-SAC-dsp has been proved to be reliable in predicting phase equilibria data, such as vapor-liquid equilibria (VLE), liquid-liquid equilibria (LLE), and infinite dilution activity coefficients (IDAC). In the COSMO-SAC-dsp model, the molecular interactions are determined from molecular surface charges obtaining from quantum mechanical calculations, and therefore the issue of missing parameter would not happen. The activity coefficient calculation in the COSMO-SAC-dsp model was obtained from the sum of three contributions: residual term, dispersion term, and combinatorial term. In this study, the effect of using different dispersion models and combinatorial models was investigated, with the residual term remains the same. We investigated the accuracy of the COSMO-SAC-dsp model with four combinatorial models and three dispersion models, including three temperature-dependence functions of interaction parameter in dispersion models.
In this study, 440 binary VLE systems and 2291 binary IDAC experimental data points were used to examine the accuracy of the COSMO-SAC-dsp model with different combinations of combinatorial and dispersion terms. We found that using the Staverman-Guggenheim model as combinatorial term (the combinatorial model of the original COSMO-SAC-dsp model) together with the temperature-independent TCLAC model (theoretically correct liquid activity coefficient model, which satisfied the pair conservation) as dispersion term provides similar accuracy as the original COSMO-SAC-dsp model in both VLE and IDAC predictions.
關鍵字(中) ★ 相平衡
★ 無限稀釋活性係數
★ 預測
★ 分散項貢獻
★ 組合項貢獻
★ COSMO-SAC
關鍵字(英) ★ phase equilibria
★ infinite dilution activity coefficient
★ prediction
★ dispersion contribution
★ combinatorial contribution
★ COSMO-SAC
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1-1 相平衡數據於工業應用上的重要性 1
1-2 活性係數模型的發展 3
1-3 COSMO-SAC的發展 4
1-4 研究動機 6
第二章 COSMO-SAC-dsp 模型 7
2-1 剩餘項活性係數 8
2-2 分散項活性係數 10
2-3 組合項活性係數 12
2-4 分散項參數優化 14
第三章 利用分子模擬探討分散作用力 17
3-1 分子模擬 17
3-2 fdsp的估算 20
第四章 結果與討論 32
4-1 非氫鍵氣液相平衡系統和氫鍵氣液相平衡系統(不含水或有機酸)計算 33
4-2 氫鍵氣液相平衡系統(含水或有機酸)計算 38
4-3 探討無限稀釋活性係數之計算結果 41
4-4 針對溫度影響進行結果討論 44
第五章 結論 46
參考文獻 47
附錄(一) 組合項模型的預測結果 56
附錄(二) ms2 參數檔(par檔、pm檔) 57
附錄(三) 各模型分散項參數整理 59
參考文獻 Paul Mathias, “Guidelines for the analysis of vapor–liquid equilibrium data”, Journal of Chemical & Engineering Data, Vol 62, pp. 2231-2233, 2017.
2 Alyssa Marie Fulgueras, et al., “Optimization study of pressure-swing distillation for the separation process of a maximum-boiling azeotropic system of water-ethylenediamine”, Korean Journal of Chemical Engineering, Vol 33, pp. 46-56, 2016.
3 Karolina Kȩdra-Królik, Mutelet Fabrice, and Jean-Noël Jaubert, “Extraction of thiophene or pyridine from n-heptane using ionic liquids. Gasoline and diesel desulfurization”, Industrial & Engineering Chemistry Research, Vol 50, pp. 2296-2306, 2011.
4 Conghua Yi, et al., “Liquid–liquid extraction of biobased isobutanol from an aqueous solution”, Journal of Chemical & Engineering Data, Vol 64, pp. 2350-2356, 2019.
5 Henning Kaemmerer, et al., “Selective crystallisation of a chiral compound-forming system—solvent screening, SLE determination and process design”, Fluid Phase Equilibria, Vol 296, pp. 192-205, 2010.
6 Zhenguo Gao, et al., “Recent developments in the crystallization process: Toward the pharmaceutical industry”, Engineering, Vol 3, pp. 343-353, 2017.
7 Ding-Yu Peng and Donald B Robinson, “A new two-constant equation of state”, Industrial & Engineering Chemistry Fundamentals, Vol 15, pp. 59-64, 1976.
8 Giorgio Soave, “Equilibrium constants from a modified Redlich-Kwong equation of state”, Chemical engineering science, Vol 27, pp. 1197-1203, 1972.
9 Grant M. Wilson, “Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing”, Journal of the American Chemical Society, Vol 86, pp. 127-130, 1964.
10 Henri Renon and J. M. Prausnitz, “Local compositions in thermodynamic excess functions for liquid mixtures”, AIChE Journal, Vol 14, pp. 135-144, 1968.
11 Denis S. Abrams and John M. Prausnitz, “Statistical thermodynamics of liquid mixtures: A new expression for the excess gibbs energy of partly or completely miscible systems”, AIChE Journal, Vol 21, pp. 116-128, 1975.
12 Alan R. Katritzky, et al., “Structurally diverse quantitative structure−property relationship correlations of technologically relevant physical properties”, Journal of Chemical Information and Computer Sciences, Vol 40, pp. 1-18, 2000.
13 Devipriya Ravindranath, et al., “QSPR generalization of activity coefficient models for predicting vapor–liquid equilibrium behavior”, Fluid Phase Equilibria, Vol 257, pp. 53-62, 2007.
14 Solomon Gebreyohannes, et al., “A comparative study of QSPR generalized activity coefficient model parameters for vapor–liquid equilibrium mixtures”, Industrial & Engineering Chemistry Research, Vol 55, pp. 1102-1116, 2016.
15 Yow-Lin Huang, et al., “Vapor–liquid equilibria of hydrogen chloride, phosgene, benzene, chlorobenzene, ortho-dichlorobenzene, and toluene by molecular simulation”, AIChE Journal, Vol 57, pp. 1043-1060, 2011.
16 Yow-lin Huang, Jadran Vrabec, and Hans Hasse, “Prediction of ternary vapor–liquid equilibria for 33 systems by molecular simulation”, Fluid Phase Equilibria, Vol 287, pp. 62-69, 2009.
17 Jadran Vrabec, Yow-lin Huang, and Hans Hasse, “Molecular models for 267 binary mixtures validated by vapor–liquid equilibria: A systematic approach”, Fluid Phase Equilibria, Vol 279, pp. 120-135, 2009.
18 Remco Hens and Thijs J. H. Vlugt, “Molecular simulation of vapor–liquid equilibria using the Wolf method for electrostatic interactions”, Journal of Chemical & Engineering Data, Vol 63, pp. 1096-1102, 2018.
19 Sebastián Caro-Ortiz, et al., “Molecular simulation of the vapor-liquid equilibria of xylene mixtures: Force field performance, and Wolf vs. Ewald for electrostatic interactions”, Fluid Phase Equilibria, Vol 485, pp. 239-247, 2019.
20 V Flemr, “A note on excess gibbs energy equations based on local composition concept”, Collection of Czechoslovak Chemical Communications, Vol 41, pp. 3347-3349, 1976.
21 Shiang-Tai Lin, et al., “Towards the development of theoretically correct liquid activity coefficient models”, The Journal of Chemical Thermodynamics, Vol 41, pp. 1145-1153, 2009.
22 Aage Fredenslund, Russell L. Jones, and John M. Prausnitz, “Group-contribution estimation of activity coefficients in nonideal liquid mixtures”, AIChE Journal, Vol 21, pp. 1086-1099, 1975.
23 Juergen Gmehling, Jiding Li, and Martin Schiller, “A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties”, Industrial & Engineering Chemistry Research, Vol 32, pp. 178-193, 1993.
24 Andreas Klamt, “Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena”, The Journal of Physical Chemistry, Vol 99, pp. 2224-2235, 1995.
25 Andreas Klamt, et al., “Refinement and parametrization of COSMO-RS”, The Journal of Physical Chemistry A, Vol 102, pp. 5074-5085, 1998.
26 Shiang-Tai Lin and Stanley I. Sandler, “A priori phase equilibrium prediction from a segment contribution solvation model”, Industrial & Engineering Chemistry Research, Vol 41, pp. 899-913, 2002.
27 Ian H. Bell, et al., “A benchmark open-source implementation of COSMO-SAC”, Journal of Chemical Theory and Computation, Vol 16, pp. 2635-2646, 2020.
28 A. Klamt and G. Schüürmann, “COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient”, Journal of the Chemical Society, Perkin Transactions 2, pp. 799-805, 1993.
29 Sebastian Sinnecker, et al., “Calculation of solvent shifts on electronic g-tensors with the conductor-like screening model (COSMO) and its self-consistent generalization to real solvents (direct COSMO-RS)”, The Journal of Physical Chemistry A, Vol 110, pp. 2235-2245, 2006.
30 Shiang-Tai Lin, et al., “Prediction of vapor pressures and enthalpies of vaporization using a COSMO solvation model”, The Journal of Physical Chemistry A, Vol 108, pp. 7429-7439, 2004.
31 Shu Wang, Stanley I. Sandler, and Chau-Chyun Chen, “Refinement of COSMO-SAC and the applications”, Industrial & Engineering Chemistry Research, Vol 46, pp. 7275-7288, 2007.
32 Chieh-Ming Hsieh, Stanley I. Sandler, and Shiang-Tai Lin, “Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions”, Fluid Phase Equilibria, Vol 297, pp. 90-97, 2010.
33 Wei-Lin Chen and Shiang-Tai Lin, “Explicit consideration of spatial hydrogen bonding direction for activity coefficient prediction based on implicit solvation calculations”, Physical Chemistry Chemical Physics, Vol 19, pp. 20367-20376, 2017.
34 Chun-Kai Chang, et al., “Improved directional hydrogen bonding interactions for the prediction of activity coefficients with COSMO-SAC”, Industrial & Engineering Chemistry Research, Vol 57, pp. 11229-11238, 2018.
35 Meng-Ting Hsieh and Shiang-Tai Lin, “A predictive model for the excess gibbs free energy of fully dissociated electrolyte solutions”, AIChE Journal, Vol 57, pp. 1061-1074, 2011.
36 Bong-Seop Lee and Shiang-Tai Lin, “The role of long-range interactions in the phase behavior of ionic liquids”, Physical Chemistry Chemical Physics, Vol 14, pp. 6520-6525, 2012.
37 Bong-Seop Lee and Shiang-Tai Lin, “Prediction of phase behaviors of ionic liquids over a wide range of conditions”, Fluid Phase Equilibria, Vol 356, pp. 309-320, 2013.
38 Chun-Kai Chang and Shiang-Tai Lin, “Extended Pitzer-Debye-Hückel model for long-range interactions in ionic liquids”, Journal of Chemical & Engineering Data, Vol 65, pp. 1019-1027, 2020.
39 Chun-Kai Chang and Shiang-Tai Lin, “Improved prediction of phase behaviors of ionic liquid solutions with the consideration of directional hydrogen bonding interactions”, Industrial & Engineering Chemistry Research, Vol 59, pp. 3550-3559, 2020.
40 Chieh-Ming Hsieh, Shiang-Tai Lin, and Jadran Vrabec, “Considering the dispersive interactions in the COSMO-SAC model for more accurate predictions of fluid phase behavior”, Fluid Phase Equilibria, Vol 367, pp. 109-116, 2014.
41 Ruichang Xiong, Stanley I. Sandler, and Russell I. Burnett, “An improvement to COSMO-SAC for predicting thermodynamic properties”, Industrial & Engineering Chemistry Research, Vol 53, pp. 8265-8278, 2014.
42 Robin Fingerhut, et al., “Comprehensive assessment of COSMO-SAC models for predictions of fluid-phase equilibria”, Industrial & Engineering Chemistry Research, Vol 56, pp. 9868-9884, 2017.
43 Eric Mullins, et al., “Sigma-profile database for using COSMO-based thermodynamic methods”, Industrial & Engineering Chemistry Research, Vol 45, pp. 4389-4415, 2006.
44 Eric Mullins, et al., “Sigma profile database for predicting solid solubility in pure and mixed solvent mixtures for organic pharmacological compounds with COSMO-based thermodynamic methods”, Industrial & Engineering Chemistry Research, Vol 47, pp. 1707-1725, 2008.
45 Rafael de P. Soares, “The combinatorial term for COSMO-based activity coefficient models”, Industrial & Engineering Chemistry Research, Vol 50, pp. 3060-3063, 2011.
46 Chieh-Ming Hsieh, et al., “A predictive model for the solubility and octanol−water partition coefficient of pharmaceuticals”, Journal of Chemical & Engineering Data, Vol 56, pp. 936-945, 2011.
47 Chao-Shou Chen and Shiang-Tai Lin, “Prediction of pH effect on the octanol–water partition coefficient of ionizable pharmaceuticals”, Industrial & Engineering Chemistry Research, Vol 55, pp. 9284-9294, 2016.
48 G. B. Flôres, P. B. Staudt, and R. de P. Soares, “Including dispersive interactions in the F-SAC model”, Fluid Phase Equilibria, Vol 426, pp. 56-64, 2016.
49 Jürgen Gmehling, Ulfert Onken, and W Arlt, Vapour-liquid equilibrium data collection, Vol.1. Dechema Frankfurt, 1982-2002.
50 Helmut Knapp, Vapor-liguid equilibria for mixtures of low boiling substances, DECHEMA chemistry data series, 1982-1989.
51 Karl Stephan and Helmut Hildwein, Recommended data of selected compounds and binary mixtures, Vol.4. Scholium International, 1987.
52 Stephan Deublein, et al., “ms2: A molecular simulation tool for thermodynamic properties”, Computer Physics Communications, Vol 182, pp. 2350-2367, 2011.
53 Colin W. Glass, et al., “ms2: A molecular simulation tool for thermodynamic properties, new version release”, Computer Physics Communications, Vol 185, pp. 3302-3306, 2014.
54 Gábor Rutkai, et al., “ms2: A molecular simulation tool for thermodynamic properties, release 3.0”, Computer Physics Communications, Vol 221, pp. 343-351, 2017.
55 J. E. Lennard-Jones, “Cohesion”, Proceedings of the Physical Society, Vol 43, pp. 461-482, 1931.
56 Johann Fischer, et al., “The influence of unlike molecule interaction parameters on liquid mixture excess properties”, Fluid Phase Equilibria, Vol 48, pp. 161-176, 1989.
57 HA Lorentz, “Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase”, Annalen der physik, Vol 248, pp. 127-136, 1881.
58 Daniel Berthelot, “Sur le mélange des gaz”, Compt. Rendus, Vol 126, pp. 1703-1706, 1898.
59 John E Hunter III and William P Reinhardt, “Finite‐size scaling behavior of the free energy barrier between coexisting phases: Determination of the critical temperature and interfacial tension of the Lennard‐Jones fluid”, The Journal of chemical physics, Vol 103, pp. 8627-8637, 1995.
60 Alauddin Ahmed and Richard J. Sadus, “Solid-liquid equilibria and triple points of n-6 Lennard-Jones fluids”, The Journal of Chemical Physics, Vol 131, pp. 174504, 2009.
61 Nicholas Metropolis, et al., “Equation of state calculations by fast computing machines”, The Journal of Chemical Physics, Vol 21, pp. 1087-1092, 1953.
62 Sascha Hempel, et al., “Activity coefficients of complex molecules by molecular simulation and Gibbs-Duhem integration”, Soft Materials, Vol 10, pp. 26-41, 2012.
63 Alicia Bermudez, Gloria Foco, and Susana B. Bottini, “Infinite dilution activity coefficients in tributyl phosphate and triacetin”, Journal of Chemical & Engineering Data, Vol 45, pp. 1105-1107, 2000.
64 Cecilia B. Castells, David I. Eikens, and Peter W. Carr, “Headspace gas chromatographic measurements of limiting activity coefficients of eleven alkanes in organic solvents at 25 °C. 1”, Journal of Chemical & Engineering Data, Vol 45, pp. 369-375, 2000.
65 Andrew J Dallas and Peter W Carr, “Critical evaluation of predicted and measured gas-liquid partition coefficients in n-hexadecane”, The Journal of Physical Chemistry, Vol 98, pp. 4927-4939, 1994.
66 Kenji Fukuchi, Katsumi Miyoshi, and Yasuhiko Arai, “Measurement and correlation of infinite dilution activity coefficients of ethers in alkanes”, Fluid Phase Equilibria, Vol 136, pp. 135-139, 1997.
67 Satoru Kato, et al., “Infinite dilution activity coefficients of n-alkane solutes, butane to decane, in n-alkane solvents, heptane to hexatriacontane”, Fluid Phase Equilibria, Vol 194-197, pp. 641-652, 2002.
68 Georgios M Kontogeorgis and Philippos Coutsikos, “Comments on “predictions of activity coefficients of nearly athermal binary mixtures using cubic equations of state””, Industrial & engineering chemistry research, Vol 44, pp. 3374-3375, 2005.
69 Michael J. Lazzaroni, et al., “Revision of MOSCED parameters and extension to solid solubility calculations”, Industrial & Engineering Chemistry Research, Vol 44, pp. 4075-4083, 2005.
70 Yoshimori Miyano, et al., “Henry′s law constants and infinite dilution activity coefficients of propane, propene, butane, 2-methylpropane, 1-butene, 2-methylpropene, trans-2-butene, cis-2-butene, 1,3-butadiene, dimethylether, chloroethane, 1,1-difluoroethane, and hexane in tetrahydropyran”, Journal of Chemical & Engineering Data, Vol 52, pp. 2245-2249, 2007.
71 Jon F. Parcher, et al., “Specific retention volumes and limiting activity coefficients of C4-C8 alkane solutes in C22-C36 n-alkane solvents”, Journal of Chemical & Engineering Data, Vol 20, pp. 145-151, 1975.
72 Christopher J. Schult, et al., “Infinite-dilution activity coefficients for several solutes in hexadecane and in n-methyl-2-pyrrolidone (NMP): Experimental measurements and UNIFAC predictions”, Fluid Phase Equilibria, Vol 179, pp. 117-129, 2001.
73 Eugene R Thomas, et al., “Limiting activity coefficients of nonpolar and polar solutes in both volatile and nonvolatile solvents by gas chromatography”, Journal of Chemical and Engineering Data, Vol 27, pp. 399-405, 1982.
74 Epaminondas C. Voutsas and Dimitrios P. Tassios, “Prediction of infinite-dilution activity coefficients in binary mixtures with UNIFAC. A critical evaluation”, Industrial & Engineering Chemistry Research, Vol 35, pp. 1438-1445, 1996.
75 Jingtao He and Chongli Zhong, “A QSPR study of infinite dilution activity coefficients of organic compounds in aqueous solutions”, Fluid Phase Equilibria, Vol 205, pp. 303-316, 2003.
指導教授 謝介銘(Chieh-Ming Hsieh) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明