博碩士論文 107324054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.220.137.164
姓名 王鑫暐(Shin-Wei Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 原料藥與水楊酸衍生物於超臨界二氧化碳中之溶解度量測
(Solubility of Pharmaceutical Compounds and Derivatives of Salicylic Acid in Supercritical Carbon Dioxide)
相關論文
★ 預測固體溶質於超臨界二氧化碳添加共溶劑系統之溶解度★ 碳酸二乙酯與低碳醇類於常壓下之汽液相平衡
★ 探討Peng-Robinson+COSMOSAC狀態方程式中分散項與溫度之關係★ 探討分散項之溫度函數與體積參數之修正對PR+COSMOSAC於相平衡預測之影響
★ 預測有機物與二氧化碳雙成份系統之固液氣三相平衡★ 常壓下乙酸酯類之雙成份混合物汽液相平衡
★ 以第一原理計算鋰嵌入與擴散於具氧空缺之二氧化鈦結構★ 探討不同量子化學方法對PR+COSMOSAC狀態方程式應用於預測純物質及混合流體相行為之影響
★ 預測固體溶質於超臨界二氧化碳中的溶解度★ 鋯金屬有機框架材料之碳氫氣體吸附與分離預測
★ 甲基水楊酸異構物於超臨界二氧化碳中之溶解度量測★ 以第一原理計算探討鋰於鈮摻雜二氧化鈦之嵌入與擴散路徑
★ 探討COSMO-SAC-dsp模型中分散項和組合項之效應★ 第一原理計算探討藍磷烯異質結構用於鋰離子電池負極材料之特性
★ 以第一原理計算探討鋰離子於鐵摻雜磷酸鋰鈷之塊材與表面附近之擴散路徑★ 利用分子結構快速估算藥物與染料分子於超臨界二氧化碳中之溶解度
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-6-30以後開放)
摘要(中) 本研究利用一套經可靠性驗證過之高壓相平衡半流動式裝置,搭配可見光光譜儀分析法,量測抗第二型糖尿病藥物、抗高血壓藥物與水楊酸衍生物於超臨界二氧化碳中之溶解度。所選擇之原料藥(active pharmaceutical ingredients, APIs)為格列齊特(gliclazide, GLZ)與卡托普利(captopril, CAP),其目標藥物屬於硫醯基尿素類衍生物和脯胺酸類衍生物,前者作用為促進胰臟β細胞分泌胰島素達到降低血糖的效果;後者利用阻斷轉化酶的作用使血管得到適當的擴張。5-甲基水楊酸(5-methylsalicylic acid, 5-MSA)則屬於水楊酸之衍生物,具有影響表面活性離子溶液的團聚行為,也可應用於自我修復凝膠材料的改質。量測溫度為308.2 K、318.2 K與328.2 K,每組固定溫度下,於90 bar ~ 185 bar測量6個壓力點,一共獲得54個實驗數據點。並且於每一實驗溫度與壓力下,至少重複量測三次以上溶解度數據,其變異係數大多小於6%,其飽和溶解度之取樣流速均控制在3 L/hr ~ 10 L/hr,所量測之格列齊特、卡托普利與5-甲基水楊酸的溶解度莫耳分率範圍分別落在10-7 ~ 10-6、10-6 ~ 10-5與10-5 ~ 10-4。除了以實驗量測固體溶解度數據外,本實驗溶解度數據也使用三種密度關聯之半經驗式進行數據迴歸,包括:以結合律(association law)為基礎的Chrastil model、由稀薄溶液理論(theory of dilute solutions)的Mendez-Santiago and Teja model及多參數的Belghait model進行迴歸計算,皆能得到合理的迴歸結果,其平均相對標準誤差(average absolute relative deviation, AARD)約為1.94% ~ 8.56%。本研究也利用Chrastil model和Mendez-Santiago and Teja model作為溶解度數據的自身一致性檢測,用以驗證實驗量測數據之可靠性。
摘要(英) In this study, a reliable high-pressure semi-flow apparatus was used to measure the solubility of antidiabetic drug, antihypertension drug and 5-methylsalicylic acid (5-MSA) in supercritical carbon dioxide (ScCO2). The active pharmaceutical ingredients (APIs) selected were gliclazide (GLZ) and captopril (CAP). The first target drug, GLZ, is a sulfonylurea derivative and acting as an antidiabetic drug. GLZ can promote the secretion of insulin from pancreatic β cells to reduce blood glucose. The second target drug, CAP, is an angiotensin-converting enzyme (ACE) inhibitor used for the treatment of hypertension. 5-MSA can affect the agglomeration behavior of surface active ionic liquid. Moreover, 5-MSA is also applied on material modification such as self-healing materials. The solubility of GLZ, CAP and 5-MSA in ScCO2 have been measured at 308.2 K, 318.2 K and 328.2 K and in the pressure range of 90 bar to 185 bar. The solubility data at a given temperature and pressure are repeatedly measured at least three times with different flow rates between 3 L/hr to 10 L/hr. The coefficient of variation of these repeated measurement is lower than 6%. It was found that the solubility of GLZ, CAP and 5-MSA are within the range of 10-7 to 10-6, 10-6 to 10-5 and 10-5 to 10-4, respectively. These solubility data also correlated by three semi-empirical models, including Chrastil model, Mendez-Santiago and Teja model (MST model) and Belghait model. The results of correlation with the average absolute relative deviation (AARD) are 1.94% ~ 8.56%. The self-consistency tests of the experimental data were confirmed through the Chrastil model and MST model.
關鍵字(中) ★ 超臨界二氧化碳
★ 固體溶解度
★ 格列齊特
★ 卡托普利
★ 5-甲基水楊酸
關鍵字(英) ★ Supercritical carbon dioxide
★ Solid solute solubility
★ Gliclazide
★ Captopril
★ 5-Methylsalicylic acid
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 超臨界流體性質簡介 1
1-2 超臨界流體之應用 7
1-3 固體溶質於超臨界二氧化碳中之溶解度重要性 8
1-4 實驗量測固體溶質於超臨界流體中之溶解度 10
1-5 抗糖尿病藥物與抗高血壓藥物之簡介 13
1-6 研究動機 18
第二章 固體溶質於超臨界二氧化碳中之溶解度量測 20
2-1 實驗方法 20
2-1-1 實驗藥品 20
2-1-2 實驗裝置 24
2-2 實驗操作程序 28
2-2-1 半流動式裝置操作與流程 28
2-2-2 樣品成分分析與檢量線標準液配製 30
2-3 取樣流速對於固體溶質溶解度之影響 32
2-4 溶解度數據處理 35
2-5 溶解度數據迴歸 41
2-6 半經驗式模型 42
2-6-1 Chrastil model 42
2-6-2 Mendez-Santiago and Teja model 43
2-6-3 Belghait model 43
2-7 溶解度數據自身一致性測試 44
第三章 結果與討論 45
3-1 目標固體溶質之檢量線擬合 45
3-2 固體溶質之溶解度數據 49
3-3 固體溶質之半經驗式迴歸 64
3-4 固體溶質之自身一致性檢測 68
3-5 5-甲基水楊酸與甲基水楊酸異構物之溶解度比較 72
第四章 結論 74
參考文獻 75
參考文獻 [1]. Bertrand Berche, Ralph Kenna, and Malte Henkel, “Critical phenomena: 150 years since Cagniard de la Tour”, Rev. Bras. Ensino Fis., Vol 31, pp. 2602, 2009.
[2]. Joseph M. DeSimone and William Tumas, Green chemistry using liquid and supercritical carbon dioxide., Oxford University Press., 2003.
[3]. P. Subra and P. Jestin, “Powders elaboration in supercritical media: comparison with conventional routes”, Powder Technol., Vol 103, pp. 2-9, 1999.
[4]. Jing-fu Jia, et al., “Solubility of glycyrrhizin in supercritical carbon dioxide with and without cosolvent”, J. Chem. Eng. Data, Vol 60, pp. 1744-1749, 2015.
[5]. Ram B. Gupta and Jae-Jin Shim, Solubility in supercritical carbon dioxide., CRC Press., 2007.
[6]. Željko Knez, et al., “Are supercritical fluids solvents for the future?”, Chem. Eng. Process, Vol 141, pp. 107532, 2019.
[7]. Dorota Kostrzewa, Agnieszka Dobrzyńska-Inger, and August Turczyn, “Experimental data and modelling of the solubility of high-carotenoid paprika extract in supercritical carbon dioxide”, Molecules, Vol 24, pp. 4174, 2019.
[8]. Andrea Natolino and Carla Da Porto, “Supercritical carbon dioxide extraction of pomegranate (Punica granatum L.) seed oil: Kinetic modelling and solubility evaluation”, J. Supercrit. Fluids, Vol 151, pp. 30-39, 2019.
[9]. Luana Cristina dos Santos, et al., “Solubility of passion fruit (Passiflora edulis Sims) seed oil in supercritical CO2”, Fluid Phase Equilib., Vol 493, pp. 174-180, 2019.
[10]. Okitsugu Kajimoto, “Solvation in supercritical Fluids:  its effects on energy transfer and chemical reactions”, Chem. Rev., Vol 99, pp. 355-390, 1999.
[11]. John F. Kauffman, “Peer reviewed: spectroscopy of solvent clustering in supercritical fluids”, Anal. Chem., Vol 68, pp. 248A-253A, 1996.
[12]. Wolfgang Saus, Dierk Knittel, and Eckhard Schollmeyer, “Dyeing of textiles in supercritical carbon dioxide”, Text. Res. J., Vol 63, pp. 135-142, 1993.
[13]. Bilgehan Guzel and Aydin Akgerman, “Mordant dyeing of wool by supercritical processing”, J. Supercrit. Fluids, Vol 18, pp. 247-252, 2000.
[14]. Jia-Jie Long, Yue-Qi Ma, and Jian-Ping Zhao, “Investigations on the level dyeing of fabrics in supercritical carbon dioxide”, J. Supercrit. Fluids, Vol 57, pp. 80-86, 2011.
[15]. Shunsuke Ito, et al., “Generation of microcellular polyurethane with supercritical carbon dioxide”, J. Appl. Polym. Sci., Vol 106, pp. 3581-3586, 2007.
[16]. Chenglong Dai, et al., “Thermoplastic polyurethane microcellular fibers via supercritical carbon dioxide based extrusion foaming”, Polym. Eng. Sci., Vol 53, pp. 2360-2369, 2013.
[17]. Dong-Han Won, et al., “Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process”, Int. J. Pharm., Vol 301, pp. 199-208, 2005.
[18]. Fernando Miguel, et al., “Supercritical anti solvent precipitation of lycopene: Effect of the operating parameters”, J. Supercrit. Fluids, Vol 36, pp. 225-235, 2006.
[19]. M. Charoenchaitrakool, et al., “Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals”, Ind. Eng. Chem. Res., Vol 39, pp. 4794-4802, 2000.
[20]. M. Turk, et al., “Micronization of pharmaceutical substances by the rapid expansion of supercritical solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents”, J. Supercrit. Fluids, Vol 22, pp. 75-84, 2002.
[21]. Owen I Corrigan and Abina M Crean, “Comparative physicochemical properties of hydrocortisone–PVP composites prepared using supercritical carbon dioxide by the GAS anti-solvent recrystallization process, by coprecipitation and by spray drying”, Int. J. Pharm., Vol 245, pp. 75-82, 2002.
[22]. RV Reji, et al., “Computational fluid dynamics simulation of the supercritical carbon dioxide flow in beam dyeing”, Text. Res. J., Vol 89, pp. 2604-2615, 2019.
[23]. Huanda Zheng, et al., “An industrial scale multiple supercritical carbon dioxide apparatus and its eco-friendly dyeing production”, J. CO2 Util., Vol 16, pp. 272-281, 2016.
[24]. Sang-Do Yeo and Erdogan Kiran, “Formation of polymer particles with supercritical fluids: a review”, J. Supercrit. Fluids, Vol 34, pp. 287-308, 2005.
[25]. Yu V Tsekhanskaya, “Solubility of naphthalene in ethylene and carbon dioxide under pressure”, Russ. J. Phys. Chem., Vol 38, pp. 1173-1176, 1964.
[26]. Mark McHugh and Michael E. Paulaitis, “Solid solubilities of naphthalene and biphenyl in supercritical carbon dioxide”, J. Chem. Eng. Data, Vol 25, pp. 326-329, 1980.
[27]. Peter A. Wells, Rodney P. Chaplin, and Neil R. Foster, “Solubility of phenylacetic acid and vanillan in supercritical carbon dioxide”, J. Supercrit. Fluids, Vol 3, pp. 8-14, 1990.
[28]. N Al-Darmaki, et al., “Solubility measurements and analysis of binary, ternary and quaternary systems of palm olein, squalene and oleic acid in supercritical carbon dioxide”, Sep. Purif. Technol., Vol 83, pp. 189-195, 2011.
[29]. Adrián Rojas-Ávila, et al., “Solubility of binary and ternary systems containing vanillin and vanillic acid in supercritical carbon dioxide”, J. Chem. Eng. Data, Vol 61, pp. 3225-3232, 2016.
[30]. Miguel G Arenas-Quevedo, et al., “Solubilities of palmitic acid + capsaicin in supercritical carbon dioxide”, J. Chem. Eng. Data, Vol 62, pp. 3861-3871, 2017.
[31]. Zhen Huang, et al., “Solubility of aspirin in supercritical carbon dioxide with and without acetone”, J. Chem. Eng. Data, Vol 49, pp. 1323-1327, 2004.
[32]. Alan Jones, Chemistry: an introduction for medical and health sciences, John Wiley & Sons, 2005.
[33]. R Bettini, et al., “Thermal and morphological characterization of micronized acetylsalicylic acid powders prepared by rapid expansion of a supercritical solution”, J. Therm. Anal. Calorim., Vol 73, pp. 487-497, 2003.
[34]. Zhen Huang, et al., “Formation of ultrafine aspirin particles through rapid expansion of supercritical solutions (RESS)”, Powder Technol., Vol 160, pp. 127-134, 2005.
[35]. Jeremy J Harrison, et al., “On-line in-situ characterization of CO 2 RESS processes for benzoic acid, cholesterol and aspirin”, Green Chem., Vol 9, pp. 351-356, 2007.
[36]. Dariush Jafari, et al., “Gas-antisolvent (GAS) crystallization of aspirin using supercritical carbon dioxide: experimental study and characterization”, Ind. Eng. Chem. Res., Vol 54, pp. 3685-3696, 2015.
[37]. Hossein Rostamian and Mohammad Nader Lotfollahi, “Production and characterization of ultrafine aspirin particles by rapid expansion of supercritical solution with solid co-solvent (RESS-SC): expansion parameters effects”, Parti. Sci. Technol., pp. 1-9, 2019.
[38]. Chen-An Lee, Muoi Tang, and Yan-Ping Chen, “Measurement and correlation for the solubilities of cinnarizine, pentoxifylline, and piracetam in supercritical carbon dioxide”, Fluid Phase Equilib., Vol 367, pp. 182-187, 2014.
[39]. Luigi Manna and Mauro Banchero, “Solubility of tolbutamide and chlorpropamide in supercritical carbon dioxide”, J. Chem. Eng. Data, Vol 63, pp. 1745-1751, 2018.
[40]. Gholamhossein Sodeifian, et al., “Experimental data and thermodynamic modeling of solubility of Sorafenib tosylate, as an anti-cancer drug, in supercritical carbon dioxide: Evaluation of Wong-Sandler mixing rule”, J. Chem. Thermodyn., Vol 142, pp. 105998, 2020.
[41]. Mojca Škerget, Zeljko Knez, and Maša Knez-Hrnčič, “Solubility of solids in sub-and supercritical fluids: a review”, J. Chem. Eng. Data, Vol 56, pp. 694-719, 2011.
[42]. Željko Knez, Darija Cör, and Maša Knez Hrnčič, “Solubility of solids in sub-and supercritical fluids: a review 2010-2017”, J. Chem. Eng. Data, Vol 63, pp. 860-884, 2017.
[43]. Leonid Poretsky, Principles of diabetes mellitus, Vol.21. Springer, 2010.
[44]. Brian C Leutholtz and Ignacio Ripoll, Exercise and disease management, CRC press, 2011.
[45]. Siang Yong Tan and Jason Merchant, “Frederick Banting (1891 - 1941): Discoverer of insulin”, Singapore Med. J., Vol 58, pp. 2, 2017.
[46]. Harold Percival Himsworth, “Diabetes mellitus: its differentiation into insolin-sensitive and insulin-insensitive types”, Lancet, Vol 230, pp. 127-130, 1936.
[47]. Appian Subramoniam, Anti-diabetes mellitus plants: active principles, mechanisms of action and sustainable utilization, CRC Press, 2016.
[48]. Organization World Health, Global report on diabetes, World Health Organization, Geneva, 2016.
[49]. NH1 Cho, et al., “IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045”, Diabetes Res. Clin. Pract., Vol 138, pp. 271-281, 2018.
[50]. Awad M Ahmed, “History of diabetes mellitus”, Saudi Med. J., Vol 23, pp. 373-378, 2002.
[51]. Ralph A DeFronzo, et al., International textbook of diabetes mellitus, 2 volume set, Vol.1. John Wiley & Sons, 2015.
[52]. J.K. Davidson, Clinical diabetes mellitus: a problem-oriented approach, Si P, 2000.
[53]. M. A. Ellraheim, et al., “Angiotensin inhibitors potentiate the hypoglycemic and antioxidant effects of gliclazide in rats”, Int. J. Pharm. Sci. Rev. Res., Vol 31, pp. 75-80, 2015.
[54]. Elisabeth R Mathiesen, et al., “Efficacy of captopril in postponing nephropathy in normotensive insulin dependent diabetic patients with microalbuminuria”, Br. Med. J., Vol 303, pp. 81-87, 1991.
[55]. Steven E Kahn, Mark E Cooper, and Stefano Del Prato, “Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future”, Lancet, Vol 383, pp. 1068-1083, 2014.
[56]. Yue Zhao, et al., “Erosion induced controllable release of gliclazide encapsulated inside degradable polymeric particles”, Macromol. Biosci., Vol 4, pp. 308-313, 2004.
[57]. Lauretta Maggi, et al., “Improvement of the dissolution behavior of gliclazide, a slightly soluble drug, using solid dispersions”, J. Drug Deliv. Sci. Technol., Vol 26, pp. 17-23, 2015.
[58]. Sharif Md Abuzar, et al., “Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process”, Int. J. Pharm., Vol 538, pp. 1-13, 2018.
[59]. Harold Kadin, Captopril, Analytical Profiles of Drug Substances, K. Florey, Editor. 1982, Academic Press. p. 79-137.
[60]. Luis Padrela, et al., “Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process”, J. Supercrit. Fluids, Vol 53, pp. 156-164, 2010.
[61]. Abhijat Shikhar, et al., “Formulation development of carbamazepine-nicotinamide co-crystals complexed with γ-cyclodextrin using supercritical fluid process”, J. Supercrit. Fluids, Vol 55, pp. 1070-1078, 2011.
[62]. Shogo Suzuki, et al. “Solubility measurement in supercritical CO2 with high pressure UV/VIS absorption spectroscopy”, The Society of Chemical Engineers, Japan, 2004.
[63]. Gholamhossein Sodeifian, et al., “Determination of the solubility of the repaglinide drug in supercritical carbon dioxide: experimental data and thermodynamic modeling”, J. Chem. Eng. Data, Vol 64, pp. 5338-5348, 2019.
[64]. 陳志宗,「甲基水楊酸異構物於超臨界二氧化碳中之溶解度量測」,國立中央大學,碩士論文,2019。
[65]. Arpita Roy, et al., “5-Methyl salicylic acid-induced thermo responsive reversible transition in surface active ionic liquid assemblies: a spectroscopic approach”, Langmuir, Vol 32, pp. 7127-7137, 2016.
[66]. Xiang Hao, et al., “Thermal-responsive self-healing hydrogel based on hydrophobically modified chitosan and vesicle”, Colloid. Polym. Sci., Vol 291, pp. 1749-1758, 2013.
[67]. Fuyuan Ding, et al., “Recent advances in chitosan-based self-healing materials”, Res. Chem. Intermed., Vol 44, pp. 4827-4840, 2018.
[68]. Roland Span and Wolfgang Wagner, “A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa”, J. Phys. Chem. Ref. Data, Vol 25, pp. 1509-1596, 1996.
[69]. JCGM 100:2008, Evaluation of measurement data - guide to the expression of uncertainty in measurement (GUM 1995 with minor corrections), 1 ed., Joint Committee for Guides in Metrology, 2008.
[70]. Barry N. Taylor and Chris E. Kuyatt, Guidelines for evaluating and expressing the uncertainty of NIST measurement results, U.S. Government Printing Office, Washington, DC, 1994.
[71]. S L R Ellison and A Williams, Eurachem/CITAC guide: quantifying uncertainty in analytical measurement, 3 ed., 2012.
[72]. J. Kragten, “Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique”, Analyst, Vol 119, pp. 2161-2165, 1994.
[73]. Thomas W Vetter. Quantifying measurement uncertainty in analytical chemistry-A simplified practical approach. in Measurement Science Conference. 2001. Anaheim, CA: National Institute of Standards and Technology (NIST).
[74]. Josef Chrastil, “Solubility of solids and liquids in supercritical gases”, J. Phys. Chem., Vol 86, pp. 3016-3021, 1982.
[75]. Janette Méndez-Santiago and Amyn S. Teja, “The solubility of solids in supercritical fluids”, Fluid Phase Equilib., Vol 158-160, pp. 501-510, 1999.
[76]. Aicha Belghait, et al., “Semi-empirical correlation of solid solute solubility in supercritical carbon dioxide: comparative study and proposition of a novel density-based model”, C. R. Chim., Vol 21, pp. 494-513, 2018.
[77]. Cherif Si-Moussa, et al., “Novel density-based model for the correlation of solid drugs solubility in supercritical carbon dioxide”, C. R. Chim., Vol 20, pp. 559-572, 2017.
[78]. M. D. Gordillo, et al., “Solubility of the antibiotic penicillin G in supercritical carbon dioxide”, J. Supercrit. Fluids, Vol 15, pp. 183-190, 1999.
[79]. Abolghasem Jouyban, Hak-Kim Chan, and Neil R. Foster, “Mathematical representation of solute solubility in supercritical carbon dioxide using empirical expressions”, J. Supercrit. Fluids, Vol 24, pp. 19-35, 2002.
[80]. Xiaoqiang Bian, Zhimin Du, and Yong Tang, “An improved density-based model for the solubility of some compounds in supercritical carbon dioxide”, Thermochim. Acta, Vol 519, pp. 16-21, 2011.
[81]. Xiao-Qiang Bian, et al., “A combined model for the solubility of different compounds in supercritical carbon dioxide”, Chem. Eng. Res. Des., Vol 104, pp. 416-428, 2015.
[82]. Xiao-Qiang Bian, et al., “A five-parameter empirical model for correlating the solubility of solid compounds in supercritical carbon dioxide”, Fluid Phase Equilib., Vol 411, pp. 74-80, 2016.
[83]. Jeong Won Kang, et al., “Quality assessment algorithm for vapor-liquid equilibrium data”, J. Chem. Eng. Data, Vol 55, pp. 3631-3640, 2010.
[84]. David J. Miller, et al., “Solubility of polycyclic aromatic hydrocarbons in supercritical carbon dioxide from 313 K to 523 K and pressures from 100 bar to 450 bar”, J. Chem. Eng. Data, Vol 41, pp. 779-786, 1996.
[85]. Keith D. Bartle, Anthony A. Clifford, and Saad A. Jafar, “Measurement of solubility in supercritical fluids using chromatographic retention: the solubility of fluorene, phenanthrene, and pyrene in carbon dioxide”, J. Chem. Eng. Data, Vol 35, pp. 355-360, 1990.
[86]. Keith P. Johnston, David H. Ziger, and Charles A. Eckert, “Solubilities of hydrocarbon solids in supercritical fluids. the augmented van der Waals treatment”, Ind. Eng. Chem. Fundam., Vol 21, pp. 191-197, 1982.
[87]. Enping Yu, et al., “Solubilities of polychlorinated biphenyls in supercritical carbon dioxide”, Ind. Eng. Chem. Res., Vol 34, pp. 340-346, 1995.
[88]. Qingguo Li, et al., “Solubility of azoxystrobin and benflumetol in compressed CO2-measured by the static precise mass measuring method”, J. Chem. Eng. Data, Vol 64, pp. 9-15, 2019.
[89]. K. Ongkasin, et al., “Solubility of cefuroxime axetil in supercritical CO2: measurement and modeling”, J. Supercrit. Fluids, Vol 152, pp. 104498, 2019.
[90]. Ben Li, Wei Guo, and Edward D. Ramsey, “Solubility measurements of chloramphenicol in supercritical fluid CO2 using static solubility apparatus interfaced with online supercritical fluid chromatography”, J. Chem. Eng. Data, Vol 65, pp. 153-159, 2020.
[91]. Raphaela G. Bitencourt, et al., “High pressure phase equilibrium of the crude green coffee oil – CO2 – ethanol system and the oil bioactive compounds”, J. Supercrit. Fluids, Vol 133, pp. 49-57, 2018.
[92]. Sivamohan N. Reddy and Giridhar Madras, “Mixture solubilities of nitrobenzoic acid isomers in supercritical carbon dioxide”, J. Supercrit. Fluids, Vol 70, pp. 66-74, 2012.
[93]. Jing-Wei Chen and Fuan-Nan Tsai, “Solubilities of methoxybenzoic acid isomers in supercritical carbon dioxide”, Fluid Phase Equilib., Vol 107, pp. 189-200, 1995.
[94]. Hongju Chang and Dennis G. Morrell, “Solubilities of methoxy-1-tetralone and methyl nitrobenzoate isomers and their mixtures in supercritical carbon dioxide”, J. Chem. Eng. Data, Vol 30, pp. 74-78, 1985.
指導教授 謝介銘(Chieh-Ming Hsieh) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明