博碩士論文 107324055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.141.202.54
姓名 陳欣漢(Hsin-Han Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定
(Development and verification of an optimal antifouling surface by surface plasmon resonance for immunoassay in human serum on field effect transistor)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究★ 利用核適體作為訊號放大器於矽奈米線場效電晶體免疫感測器對生物標記物進行定量分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來隨著醫學相關領域的發展,對於疾病的診斷和治療都需要透過儀器的檢測進行一系列的分析與探討。追求高靈敏度、反應時間快速、無須標定等的生物分子檢測平台是大家共同的目標,為了達成這樣的目的除了檢測儀器本身擁有更低的檢測極限外,檢測表面也必須避免來自非專一性吸附(Non-specific adsorption)的干擾,尤其是在臨床檢測中,檢測來自體液(血液、血清、尿液)等較複雜系統內的物質,這樣非專一性吸附,如蛋白質等所構成的汙損表面可能造成生物感測器的靈敏度下降,影響專一性和再現性,加上非專一性吸附汙染使得背景訊號的上升,總總原因導致無法清楚辨別檢測結果而造成錯誤的判斷,如此一來更體現了防汙(Antifouling)的重要。
在本研究中,選擇poly (ethylene glycol) (PEG)聚乙二醇利用自組裝單層膜(SAM)的方式修飾表面,透過EG本身藉由氫鍵抓取水分子形成緻密的水層,以此水層形成屏障抵擋來自蛋白質非專一的吸附。使用表面電漿共振影像儀(surface plasmon resonance image,SPRi)觀測非專一性物質的吸附以及在血清中的干擾測試,實驗結果中發現,使用PEG分子量800DA,SH-PEG-NH2 : SH-PEG-OH=1:20,濃度1mM的混和比例所製得的SAM,對單一蛋白質和稀釋血清可以有很好的抗非專一性吸附特性(<1 ng/cm2),而在干擾測試中,也可以成功在血清環境中分辨不同濃度的目標物。將此最佳條件成果移轉至FET後,結果顯示不僅保有優異的抗非專一性吸附特性之外,甚至可以清楚辨識血清環境中更低濃度的目標物,因此在這項研究中,我們開發的表面提供了可以檢測生物分子並減少複雜生物介質中非特異性吸附的最佳條件,為臨床診斷平台提供了有希望的表面,可以更精準的診斷及早給予正確的治療,以此模式創造對精準醫療檢測中的平台。
摘要(英) In recent years, with the development of medical related domain, the diagnosis and treatment of diseases require a series of analysis and discussion through instrument detection. Pursuing a high-sensitivity, short reaction time, and label-free biomolecule detection platform is a common goal for everyone. In order to achieve this goal, not only the more sensitive detection instruments, but the detection surface must also avoid the interference of non-specific adsorption. These non-specific substances are usually come from the non-specific adsorption of proteins, especially in clinical testing, detecting sample from complex systems such as physiological fluids (blood, serum, urine). The fouling surface may decrease the sensitivity of the biosensor , affecting the specificity and reproducibility, and increase the background signal. In this way, it further illustrates the importance of antifouling.
In this study, we modify poly (ethylene glycol) (PEG) to the surface by self-assembled monolayer (SAM). EG monomer can capture the water molecules by hydrogen bonds to form a dense water layer, which forms a barrier against non-specific protein adsorption. We detect the adsorption of non-specific substances and interference tests in serum by surface plasmon resonance image (SPRi). By the experimental results, the mixed SAM solution of SH-PEG-NH2 : SH-PEG-OH=1:20 (total concentration of 1mM in absolute ethanol), has an excellent antifouling ability with lower than 1 ng/cm2 nonspecific adsorption from single protein and diluted serum. Furthermore, the SPR sensor could successfully detect the biomolecule in diluted human serum in the interference test. After getting the optimal condition from SPR, we apply it to FET. We could clearly detect 0.1 nM of the target in 1% serum by FET. Therefore, in this study, the surface we developed provides the best conditions for detecting biomolecules and reducing non-specific adsorption in complex biological media, providing a promising surface for clinical diagnostic platforms, allowing for more accurate diagnosis early and give the proper treatment. To create a large platform for precision medical testing with this model.
關鍵字(中) ★ 表面電漿共振
★ 矽奈米線場效電晶體
★ 自組裝單層膜
★ 聚乙二醇
關鍵字(英) ★ surface plasmon resonance
★ Silicon nanowire field effect transistor
★ Self-assembled monolayer
★ poly (ethylene glycol)
論文目次 中文摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 xi
表目錄 xvi
第一章 緒論 1
第二章 文獻回顧 3
2.1 汙損表面 3
2.1.1物理方法 4
2.1.2化學方法 5
2.1.3 聚乙二醇 6
2.1.4立體排斥 7
2.1.5水合作用 10
2.2表面電漿共振 11
2.2.1表面電漿共振原理 12
2.2.2表面電漿共振儀分類 14
2.2.3表面電漿共振儀 17
2.3矽奈米線場效電晶體生物感測器 20
2.4晶片改質 25
2.4.1自組裝單層膜表面改質技術 25
2.4.2表面分子固定化 29
2.4.3影響自組裝單層膜之因素 31
2.4.3.1反應溫度之影響 33
2.4.3.2硫醇類分子濃度之影響 36
2.4.3.3氫鍵形成之影響 37
第三章 實驗藥品、儀器設備與方法 41
3.1實驗藥品 41
3.2儀器設備 44
3.3實驗方法 46
3.3.1 SPR實驗 46
3.3.1.1 SPR晶片製備 46
3.3.1.2 SPR晶片之表面改質 46
3.3.1.3緩衝溶液配置 48
3.3.1.4 Antifouling實驗 49
3.3.1.5 SPRi interference實驗 50
3.3.2 FET實驗 51
3.3.2.1 FET 晶片之表面改質 51
3.3.2.2 緩衝溶液配製 52
3.3.2.3 電性測量 53
第四章 結果與討論 54
4.1表面接觸角 55
4.2 XPS表面元素分析 57
4.3 AFM 表面粗糙度分析 60
4.4表面材料抗非專一性吸附測試 63
4.4.1短鏈PEG抗非專一性吸附測試 64
4.4.1.1抗單一蛋白質吸附測試 65
4.4.1.2抗血清吸附測試 70
4.4.2長鏈PEG抗非專一性吸附測試 73
4.4.2.1抗單一蛋白質吸附測試 73
4.4.2.2抗血清吸附測試 77
4.5 免疫檢測 83
4.6最適化條件於FET之應用 85
第五章 結論與未來展望 90
5.1結論 90
5.2未來展望 92
第六章 參考文獻 93
第七章 附件 100
7.1 不同SAMs表面於不同處理下的粗糙度 100
7.2 COB檢測 106
參考文獻 1. Cole, N., et al., In vivo performance of melimine as an antimicrobial coating for contact lenses in models of CLARE and CLPU. Investigative ophthalmology & visual science , 2010. 51(1): p. 390-395.
2. Donlan, R.M.J.C.I.D., Biofilm formation: a clinically relevant microbiological process. Clinical Infectious Diseases, 2001. 33(8): p. 1387-1392.
3. Vasilev, K., J. Cook, and H.J.J.E.r.o.m.d. Griesser, Antibacterial surfaces for biomedical devices. Expert review of medical devices , 2009. 6(5): p. 553-567.
4. Pavithra, D. and M.J.B.M. Doble, Biofilm formation, bacterial adhesion and host response on polymeric implants—issues and prevention. Biomedical Materials , 2008. 3(3): p. 034003.
5. Luna-Moreno, D., et al., Early detection of the fungal banana black sigatoka pathogen Pseudocercospora fijiensis by an SPR immunosensor method. Sensors , 2019. 19(3): p. 465.
6. Dutra, R.F., et al., Surface plasmon resonance immunosensor for human cardiac troponin T based on self-assembled monolayer. Journal of pharmaceutical and biomedical analysis, 2007. 43(5): p. 1744-1750.
7. Gutiérrez-Sanz, Ó., et al., Transistor-based immunosensing in human serum samples without on-site calibration. Sensors and Actuators B: Chemical , 2019. 295: p. 153-158.
8. Yang, C., et al., Bactericidal functionalization of wrinkle-free fabrics via covalently bonding TiO 2@ Ag nanoconjugates. Journal of materials science , 2009. 44(7): p. 1894-1901.
9. Bozja, J., et al., Porphyrin‐based, light‐activated antimicrobial materials. Journal of Polymer Science Part A: Polymer Chemistry , 2003. 41(15): p. 2297-2303.
10. Almeida, E., T.C. Diamantino, and O.J.P.i.O.C. de Sousa, Marine paints: the particular case of antifouling paints. Progress in Organic Coatings , 2007. 59(1): p. 2-20.
11. Flemming, H.-C.J.A.m. and biotechnology, Biofouling in water systems–cases, causes and countermeasures. Applied microbiology and biotechnology, 2002. 59(6): p. 629-640.
12. Callow, J.A. and M.E.J.N.c. Callow, Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature communications , 2011. 2(1): p. 1-10.
13. Jain, A. and N.B.J.B. Bhosle, Biochemical composition of the marine conditioning film: implications for bacterial adhesion. Biofouling ,2009. 25(1): p. 13-19.
14. Lichtenberg, J.Y., Y. Ling, and S.J.S. Kim, Non-Specific Adsorption Reduction Methods in Biosensing. Sensors, 2019. 19(11): p. 2488.
15. Vaisocherová, H., et al., Functionalizable low-fouling coatings for label-free biosensing in complex biological media: advances and applications. Analytical and bioanalytical chemistry , 2015. 407(14): p. 3927-3953.
16. Blawas, A. and W.J.B. Reichert, Protein patterning. Biomaterials ,1998. 19(7-9): p. 595-609.
17. Pan, S., et al., Biofouling removal and protein detection using a hypersonic resonator. ACS sensors , 2017. 2(8): p. 1175-1183.
18. Zhang, H., M.J.J.o.m. Chiao, and b. engineering, Anti-fouling coatings of poly (dimethylsiloxane) devices for biological and biomedical applications. Journal of medical and biological engineering, 2015. 35(2): p. 143-155.
19. Riquelme, M.V., et al., Optimizing blocking of nonspecific bacterial attachment to impedimetric biosensors. Sensing and bio-sensing research, 2016. 8: p. 47-54.
20. Steinitz, M.J.A.b., Quantitation of the blocking effect of tween 20 and bovine serum albumin in ELISA microwells. Analytical biochemistry , 2000. 282(2): p. 232-238.
21. Sheikh, S., et al., Sacrificial BSA to block non‐specific adsorption on organosilane adlayers in ultra‐high frequency acoustic wave sensing. Surface and interface analysis , 2013. 45(11-12): p. 1781-1784.
22. Tacha, D.E. and L.J.J.o.H. McKinney, Casein reduces nonspecific background staining in immunolabeling techniques. Journal of Histotechnology , 1992. 15(2): p. 127-132.
23. Schlenoff, J.B.J.L., Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir , 2014. 30(32): p. 9625-9636.
24. Jeyachandran, Y., et al., Efficiency of blocking of non-specific interaction of different proteins by BSA adsorbed on hydrophobic and hydrophilic surfaces. Journal of colloid and interface science, 2010. 341(1): p. 136-142.
25. Holmlin, R.E., et al., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir , 2001. 17(9): p. 2841-2850.
26. Zheng, J., et al., Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: a molecular simulation study. Biophysical journal, 2005. 89(1): p. 158-166.
27. Herrwerth, S., et al., Factors that determine the protein resistance of oligoether self-assembled monolayers− internal hydrophilicity, terminal hydrophilicity, and lateral packing density. Journal of the American Chemical Society ,2003. 125(31): p. 9359-9366.
28. Chen, S., et al., Controlled chemical and structural properties of mixed self-assembled monolayers of alkanethiols on Au (111). Langmuir , 2000. 16(24): p. 9287-9293.
29. Al-Ani, A., et al., Tuning the density of poly (ethylene glycol) chains to control mammalian cell and bacterial attachment. Polymers, 2017. 9(8): p. 343.
30. Mehne, J., et al., Characterisation of morphology of self-assembled PEG monolayers: a comparison of mixed and pure coatings optimised for biosensor applications. Analytical and bioanalytical chemistry , 2008. 391(5): p. 1783-1791.
31. Lokanathan, A.R., et al., Mixed poly (ethylene glycol) and oligo (ethylene glycol) layers on gold as nonfouling surfaces created by backfilling. Biointerphases , 2011. 6(4): p. 180-188.
32. Li, L., S. Chen, and S.J.J.o.B.S. Jiang, Polymer Edition, Protein interactions with oligo (ethylene glycol)(OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption. Journal of Biomaterials Science,2007. 18(11): p. 1415-1427.
33. Cao, C., et al., A strategy for sensitivity and specificity enhancements in prostate specific antigen-α1-antichymotrypsin detection based on surface plasmon resonance. Biosensors and Bioelectronics , 2006. 21(11): p. 2106-2113.
34. Zhao, C., et al., Effect of film thickness on the antifouling performance of poly (hydroxy-functional methacrylates) grafted surfaces. Langmuir , 2011. 27(8): p. 4906-4913.
35. Liu, X., et al., Grafting hyaluronic acid onto gold surface to achieve low protein fouling in surface plasmon resonance biosensors. ACS applied materials & interfaces , 2014. 6(15): p. 13034-13042.
36. Chang, Y., et al., A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir ,2008. 24(10): p. 5453-5458.
37. Zhang, Z., et al., Blood compatibility of surfaces with superlow protein adsorption. Biomaterials, 2008. 29(32): p. 4285-4291.
38. Cheng, G., et al., A switchable biocompatible polymer surface with self‐sterilizing and nonfouling capabilities. Angewandte Chemie , 2008. 47(46): p. 8831-8834.
39. Zhang, Z., S. Chen, and S.J.B. Jiang, Dual-functional biomimetic materials: nonfouling poly (carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules, 2006. 7(12): p. 3311-3315.
40. Liu, K.-J. and J.L.J.M. Parsons, Solvent effects on the preferred conformation of poly (ethylene glycols). Macromolecules , 1969. 2(5): p. 529-533.
41. Abuchowski, A., et al., Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. Journal of Biological Chemistry ,1977. 252(11): p. 3578-3581.
42. Morra, M.J.J.o.B.S., Polymer Edition, On the molecular basis of fouling resistance. Polymer Edition, 2000. 11(6): p. 547-569.
43. Halperin, A.J.L., Polymer brushes that resist adsorption of model proteins: design parameters. Langmuir, 1999. 15(7): p. 2525-2533.
44. Pasche, S., et al., Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces. The Journal of Physical Chemistry B, 2005. 109(37): p. 17545-17552.
45. Unsworth, L.D., H. Sheardown, and J.L.J.L. Brash, Protein resistance of surfaces prepared by sorption of end-thiolated poly (ethylene glycol) to gold: effect of surface chain density. Langmuir , 2005. 21(3): p. 1036-1041.
46. Li, L., et al., Protein adsorption on oligo (ethylene glycol)-terminated alkanethiolate self-assembled monolayers: the molecular basis for nonfouling behavior. The Journal of Physical Chemistry B, 2005. 109(7): p. 2934-2941.
47. Prime, K.L. and G.M.J.J.o.t.A.C.S. Whitesides, Adsorption of proteins onto surfaces containing end-attached oligo (ethylene oxide): a model system using self-assembled monolayers. Journal of the American Chemical Society ,1993. 115(23): p. 10714-10721.
48. Zheng, J., et al., Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir ,2004. 20(20): p. 8931-8938.
49. Kitano, H., et al., Structure of water incorporated in sulfobetaine polymer films as studied by ATR‐FTIR. Macromolecular bioscience ,2005. 5(4): p. 314-321.
50. Clark Jr, L.C. and C.J.A.o.t.N.Y.A.o.s. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of sciences ,1962. 102(1): p. 29-45.
51. Rogers, K.J.A.C.A., Recent advances in biosensor techniques for environmental monitoring. Analytica Chimica Acta , 2006. 568(1-2): p. 222-231.
52. Wood, R.W.J.P.o.t.P.S.o.L., On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science , 1902. 18(1): p. 269.
53. Fano, U.J.J., The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA ,1941. 31(3): p. 213-222.
54. Ladd, J., et al., Direct detection of carcinoembryonic antigen autoantibodies in clinical human serum samples using a surface plasmon resonance sensor. Colloids and Surfaces B: Biointerfaces , 2009. 70(1): p. 1-6.
55. Liu, J.T., et al., Surface plasmon resonance biosensor with high anti-fouling ability for the detection of cardiac marker troponin T. Analytica chimica acta,2011. 703(1): p. 80-86.
56. Ostatná, V., et al., Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance. Analytical and bioanalytical chemistry , 2008. 391(5): p. 1861-1869.
57. Touahir, L., et al., Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization. Biosensors and Bioelectronics , 2010. 25(12): p. 2579-2585.
58. Cennamo, N., et al., D-shaped plastic optical fibre aptasensor for fast thrombin detection in nanomolar range. Scientific reports , 2019. 9(1): p. 1-9.
59. Silin, V., et al., SPR studies of the nonspecific adsorption kinetics of human IgG and BSA on gold surfaces modified by self-assembled monolayers (SAMs). Journal of colloid and interface science , 1997. 185(1): p. 94-103.
60. Karlsson, R., A. Michaelsson, and L.J.J.o.i.m. Mattsson, Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. Journal of immunological methods , 1991. 145(1-2): p. 229-240.
61. Ritchie, R.H.J.P.r., Plasma losses by fast electrons in thin films. Physical review,1957. 106(5): p. 874.
62. Fu, E., et al., Characterization of a wavelength-tunable surface plasmon resonance microscope. Review of scientific instruments, 2004. 75(7): p. 2300-2304.
63. Campbell, C.T. and G.J.B. Kim, SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials , 2007. 28(15): p. 2380-2392.
64. Piliarik, M., J.J.S. Homola, and A.B. Chemical, Self-referencing SPR imaging for most demanding high-throughput screening applications. Sensors and Actuators B: Chemical , 2008. 134(2): p. 353-355.
65. Piliarik, M., et al., Towards parallelized surface plasmon resonance sensor platform for sensitive detection of oligonucleotides. Sensors and Actuators B: Chemical ,2007. 121(1): p. 187-193.
66. Tsai, C.-C., et al., Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection. Nanotechnology ,2011: p. 135503.
67. Chen, K.-I., B.-R. Li, and Y.-T.J.N.t. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano today , 2011. 6(2): p. 131-154.
68. Cui, Y., et al., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. science, 2001. 293(5533): p. 1289-1292.
69. Li, Z., et al., Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Letters, 2004. 4(2): p. 245-247.
70. Kind, M. and C.J.P.i.S.S. Wöll, Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Progress in Surface Science , 2009. 84(7-8): p. 230-278.
71. Sagiv, J.J.J.o.t.A.C.S., Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society ,1980. 102(1): p. 92-98.
72. Capecchi, G., et al., Adsorption of CH 3 COOH on TiO 2: IR and theoretical investigations. Research on Chemical Intermediates , 2007. 33(3-5): p. 269-284.
73. Ulman, A.J.C.r., Formation and structure of self-assembled monolayers. Chemical reviews ,1996. 96(4): p. 1533-1554.
74. Foster, A.S. and R.M.J.T.J.o.c.p. Nieminen, Adsorption of acetic and trifluoroacetic acid on the TiO 2 (110) surface. The Journal of chemical physics , 2004. 121(18): p. 9039-9042.
75. Wang, G.M., W.C. Sandberg, and S.D.J.N. Kenny, Density functional study of a typical thiol tethered on a gold surface: ruptures under normal or parallel stretch. Nanotechnology, 2006. 17(19): p. 4819.
76. Soreta, T.R., Electrochemically deposited metal nanostructures for application in genosensors. 2009: Universitat Rovira i Virgili.
77. Niemeyer, C.M.J.A.C.I.E., Semisynthetic DNA–protein conjugates for biosensing and nanofabrication. Angewandte Chemie International Edition, 2010. 49(7): p. 1200-1216.
78. Rusmini, F., Z. Zhong, and J.J.B. Feijen, Protein immobilization strategies for protein biochips. Sensors and Actuators B: Chemical , 2007. 8(6): p. 1775-1789.
79. Yu, Q., et al., Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor. Sensors and Actuators B: Chemical , 2005. 107(1): p. 193-201.
80. Cohen-Atiya, M. and D.J.J.o.E.C. Mandler, Studying thiol adsorption on Au, Ag and Hg surfaces by potentiometric measurements. Journal of Electroanalytical Chemistry , 2003. 550: p. 267-276.
81. Carrascosa, L.G., et al., Understanding the role of thiol and disulfide self-assembled DNA receptor monolayers for biosensing applications. European Biophysics Journal , 2010. 39(10): p. 1433-1444.
82. Schreiber, F.J.P.i.s.s., Structure and growth of self-assembling monolayers. Progress in surface science , 2000. 65(5-8): p. 151-257.
83. Li, L., S. Chen, and S.J.L. Jiang, Protein adsorption on alkanethiolate self-assembled monolayers: nanoscale surface structural and chemical effects. Langmuir , 2003. 19(7): p. 2974-2982.
84. Bain, C.D., et al., Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society, 1989. 111(1): p. 321-335.
85. Wang, H., et al., Improved method for the preparation of carboxylic acid and amine terminated self-assembled monolayers of alkanethiolates. Langmuir, 2005. 21(7): p. 2633-2636.
86. Luz, J.G., et al., Development and evaluation of a SPR-based immunosensor for detection of anti-Trypanosoma cruzi antibodies in human serum. Sensors and Actuators B: Chemical , 2015. 212: p. 287-296.
87. Chen, S., et al., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
88. Piliarik, M., et al., Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma. Biosensors and Bioelectronics, 2010. 26(4): p. 1656-1661.
89. Hayashi, T., et al., Mechanism underlying bioinertness of self-assembled monolayers of oligo (ethyleneglycol)-terminated alkanethiols on gold: protein adsorption, platelet adhesion, and surface forces. Physical Chemistry Chemical Physics, 2012. 14(29): p. 10196-10206.
90. Ladd, J., et al., Direct detection of carcinoembryonic antigen autoantibodies in clinical human serum samples using a surface plasmon resonance sensor. Colloids and Surfaces B: Biointerfaces ,2009: p. 1-6.
91. Bian, S., et al., Development and validation of an optical biosensor for rapid monitoring of adalimumab in serum of patients with Crohn′s disease. Drug testing and analysis ,2018. 10(3): p. 592-596.
92. Unsworth, L.D., H. Sheardown, and J.L.J.L. Brash, Protein-resistant poly (ethylene oxide)-grafted surfaces: chain density-dependent multiple mechanisms of action. Langmuir, 2008. 24(5): p. 1924-1929.
93. Ratner, B.D., et al., Biomaterials science: an introduction to materials in medicine. 2004: Elsevier.
94. Tsai, W.-C., I.-C.J.S. Li, and A.B. Chemical, SPR-based immunosensor for determining staphylococcal enterotoxin A. Sensors and Actuators B: Chemical, 2009. 136(1): p. 8-12.
95. Vu, C.-A., et al., Signal Enhancement of Silicon Nanowire Field-Effect Transistor Immunosensors by RNA Aptamer. ACS Omega.
96. Filipiak, M.S., et al., Highly sensitive, selective and label-free protein detection in physiological solutions using carbon nanotube transistors with nanobody receptors. Sensors and Actuators B: Chemical 255, 2018: p. 1507-1516.
97. Andoy, N.M., et al., Graphene‐Based Electronic Immunosensor with Femtomolar Detection Limit in Whole Serum. Advanced Materials Technologies ,2018. 3(12): p. 1800186.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2020-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明