博碩士論文 107326001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:18.222.161.123
姓名 許博鈞(XU-BO JUN)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2019及2020年高山與都市環境氣膠化學及光學特性定稿
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文於2019年秋季(10月)在南投縣鹿林山(海拔2,862公尺)以及2020年春季(3至5月)在鹿林山和台中市中山醫學大學(海拔50公尺)分別採集氣動直徑為1.0 μm、2.5 μm、10 μm (PM1、PM2.5、PM10)大氣氣膠,並解析氣膠化學成分和光學特性。
2019年鹿林山秋季PM2.5和 PM10質量濃度分別為 7 ± 3 和9 ± 3 μg m-3,2020年春季PM1、PM2.5和 PM10質量濃度則分別為 18 ± 9、21 ± 10、24 ± 11 μg m-3,兩季氣膠粒徑分布都偏向由細粒徑主導。春季氣流軌跡分類以生質燃燒類型(BB)發生頻率最高,PM2.5 總碳成分與K+的線性相關性高(R2 =0.93; n=25, p < 0.01),顯示受到生質燃燒傳輸影響;弱生質燃燒人為排放類型(WBB-AN)的SO42-濃度比秋季自由大氣類型(F-FT)高0.8 μg m-3,可視為境外傳輸人為排放增多的貢獻量。分析2003-2020年觀測數據,春季最高PM2.5濃度出現在2004年,BB類型的人為排放影響有逐年上升趨勢。
中山醫PM1、PM2.5、PM10的質量濃度分別為23 ± 9、31 ± 11、47 ± 16 μg m-3,中山醫細粒徑顆粒也是主導氣膠質量濃度,但不及鹿林山顯著。中山醫PM2.5低濃度(CSMU-LC)主要污染源是工業活動,工業活動貢獻量隨粒徑變小(PM1)而增加;相對地,交通活動是中山醫高濃度(CSMU-HC) PM2.5主要污染源,交通活動貢獻隨粒徑變大(PM10)而增加,高濃度的形成主要受擴散不佳及發生光化學反應影響。
以Revised IMPROVE方程式估算鹿林山及中山醫氣膠化學成分貢獻的大氣消光係數(bext)與儀器測量結果相關性都很好(R2 =0.84, n=20, p < 0.01; R2 =0.80, n=17, p<0.01),顯示氣膠化學成分與bext有密切關係。鹿林山秋季bext由硫酸銨(AS)和空氣分子(RS)共同主導,春季則由有機物(OM)主導。中山醫bext主要由AS和硝酸銨(AN)貢獻,CSMU-HC bext高於CSMU-LC主要原因為AN占比提升。吸收光徑370 nm和880 nm黑碳濃度差異提供另類方法推測受生質燃燒影響,所推估出鹿林山受到較強烈生質燃燒日期,與氣流軌跡分類日期相近。鹿林山氣膠光學厚度(AOD)受PM2.5中AS及元素碳影響較大,且鹿林山高AOD採樣日通常伴隨較細的粒徑分布。
綜合而言,歷年數據分析顯示春季最高PM2.5濃度出現在2004年,2020年春季鹿林山仍受到東南亞生質燃燒傳輸影響,秋季bext由AS和RS共同主導,春季則由OM主導。中山醫採樣期間bext主要由AS和AN貢獻,CSMU-LC受工業源影響大,CSMU-HC則是受交通源、擴散不佳、光化學反應影響。
摘要(英) This study collected PM1, PM2.5, and PM10 (particulate matter with an aerodynamic less than or equal to 1, 2.5, and 10 μm) in fall (October) of 2019 and spring (March to May) of 2020 at Mt. Lulin (2862 m above sea level). PM1, PM2.5, and PM10 were also collected at Chung Shan Medical University (CSMU) (50 m a.s.l.) in the spring of 2020. The chemical composition was resolved, and optical properties were computed from the collected PM.
The mass concentrations of PM2.5 and PM10 at Mt. Lulin in fall of 2019 were 7 ± 3 and 9 ± 3 μg m-3, respectively, and the mass concentrations of PM1, PM2.5, and PM10 in spring of 2020 were 18 ± 9, 21 ± 10, and 24 ± 11 μg m-3, respectively. Fine PM both dominated the particle size distribution of the two seasons. In spring, the biomass burning (BB) type occurred highest in the airmass trajectory classification. High linear correlation (R2 =0.93; n=25, p <0.01) between the total carbon content and K+ of PM2.5 indicated the influence of transported BB smoke. In contrast, the SO42- concentration of the weak BB anthropogenic type (WBB-AN) was 0.8 μg m-3 more than that of the free troposphere type (F-FT) in fall, which could be counted as an additional contribution from anthropogenic emissions by transboundary transport. The highest spring PM2.5 concentration appeared in 2004, and the impact from anthropogenic emissions of BB type had an upward trend year by year from 2003 to 2020.
The mass concentrations of PM1, PM2.5, and PM10 at CSMU were 23 ± 9, 31 ± 11, and 47 ± 16 μg m-3, respectively. The fine particle size at CSMU also dominated the aerosol mass concentration but was not as significant as that of Mt. Lulin. The main PM2.5 pollution source of CSMU-LC was industrial activity, which contributed more with reduced particle size (PM1). In contrast, traffic activity was the primary pollution source of CSMU-HC, and the contribution of traffic activity increased as the particle size became larger (PM10). The formation of high concentration events was influenced by poor ventilation and photochemical reactions.
The atmospheric extinction coefficient (bext) contributed by the aerosol chemical components, estimated by using the Revised IMPROVE equation, correlated well (R2 = 0.84, n = 20, p <0.01; R2 = 0.80, n = 17, p <0.01) with measurements both at Mt. Lulin and CSMU. The results indicate that aerosol chemical composition is closely related to bext. The bext was jointly dominated by ammonium sulfate (AS) and Rayleigh scattering (RS) at Mt. Lulin in fall, while it was led by organic matter (OM) in spring. The bext at CSMU was mainly contributed by AS and ammonium nitrate (AN). The higher value of bext at CSMU-HC than that of CSMU-LC is because of the greater proportion of AN. The difference in black carbon concentrations between 370 and 880 nm provided an alternative method for inferring dates influenced by intense BB because the dates were similar to those of the air trajectory classification method. The aerosol optical depth (AOD) at Mt. Lulin was greatly affected by the AS and elemental carbon (EC) in PM2.5, and finer particle size spectra usually accompanied high AOD sampling days.
In summary, the highest PM2.5 concentration at the Mt. Lulin site in spring occurred in 2004 from historical data. Mt. Lulin is still under the influence of the transported BB from Southeast Asia in spring 2020. The bext was dominated by AS and RS in fall and OM in spring in 2020. During the CSMU sampling period, the bext was primarily contributed by AS and AN with industrial activity as the main pollution source of CSMU-LC in contrast to traffic activity at CSMU-HC plus poor ventilation and photochemical reactions.
關鍵字(中) ★ 鹿林山測站
★ 生質燃燒
★ 長程傳輸
★ 都市氣膠
★ 氣膠化學與光學
關鍵字(英) ★ Mt. Lulin
★ biomass burning
★ long-range transport
★ urban aerosol
★ aerosol chemistry and optical properties
論文目次 摘要 I
Abostract III
致謝 V
目錄 VI
圖目錄 X
表目錄 XIV
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1鹿林山相關研究 4
2.2都市氣膠特性 6
2.3生質燃燒說明 8
2.4氣膠碳成分說明 11
2.5氣膠水溶性無機離子說明 16
2.6化學成分粒徑分布說明 19
2.7氣膠光學特性 20
第三章 研究方法 23
3.1 研究流程與步驟 23
3.2 採樣地點與採樣週期 24
3.3採樣儀器 27
3.4儀器與濾紙 29
3.4.1濾紙前處理 29
3.4.2樣本運送與保存 30
3.5樣本分析方法 30
3.5.1 質量濃度分析 30
3.5.2氣膠碳成分分析 32
3.5.3 水溶性無機離子分析 36
3.5.4 氣膠微粒揮發成分補償校正 39
3.6氣膠水溶性離子非海洋來源 42
3.7 NOAA 氣膠觀測系統 42
3.7.1 積分式散光儀 (TSI Model 3563 Integrating Nephelometer) 43
3.7.2 微粒碳吸收光度計 (PSAP) 46
3.7.3 黑碳儀(Aethalometer AE-31, Magee Scientific) 50
3.7.4 長光徑能見度透射儀(Long path visibility transmissometer) 54
3.8 環保署測站其他自動監測儀器 56
3.9 判別生質燃燒發生的方法 56
3.9.1 美國太空總署 (NASA) 自然災害網 57
3.9.2 美國太空總署全球火災監測中心 58
3.9.3 氣流軌跡模式 (NOAA HYSPLIT) 58
3.10 光學計算方法 59
3.10.1 Revised IMPROVE 公式計算消光係數 59
3.10.2 Ångström exponent(AE) 62
第四章 結果與討論 63
4.1鹿林山氣流軌跡分類依據 63
4.2 2020年鹿林山氣膠特性分析 67
4.2.1秋季與春季PM2.5氣膠碳成分解析 69
4.2.2秋季與春季PM2.5氣膠水溶性無機離子解析 72
4.2.3鹿林山PM2.5碳成分生質燃燒貢獻OC及EC探討 75
4.2.4鹿林山歷年化學成分變化討論 77
4.3 2020都市春季氣膠化學成分特性分析 82
4.3.1高濃度判斷事件成因與組成變化探討 84
4.3.2都市PM2.5氣膠碳成分及都市與高山測站碳成分差異 90
4.3.3都市PM2.5水溶性無機離子及都市與高山測站水溶性無機離子差異 93
4.3.4高山與都市春季衍生碳污染物濃度與占比差異 96
4.4高山與都市氣膠不同粒徑區間化學成分占比與特性探討 99
4.4.1鹿林山春季BB氣流軌跡類型PM1、PM1-2.5、PM2.5-10化學成分探討 99
4.4.2中山醫PM1、PM1-2.5、PM2.5-10化學成分分布與高山、都市差異探討 103
4.4.3鹿林山春季PM1、PM1-2.5、PM2.5-10各成分相關性與SO42-來源 107
4.4.4高山與都市環境各粒徑污染源特徵比探討 109
4.5氣膠化學成分與大氣光學關係 111
4.5.1鹿林山秋季與春季量測吸光與散光係數變化探討 111
4.5.2 鹿林山氣膠化學成分與大氣消光係數關係 114
4.5.3高山與都市環境氣膠消光與化學成分貢獻差異探討 118
4.5.4黑碳和元素碳差異性與黑碳判斷生質燃燒影響方法探討 122
4.5.5氣膠光學厚度(AOD)與鹿林山化學成分關係 125
第五章 結論與建議 129
5.1結論 129
5.2建議 132
參考文獻 133
附錄一 秋季採樣期間氣流軌跡圖 151
附錄二 春季採樣期間氣流軌跡圖 158
附錄三 春季採樣期間火點圖 178
附錄四 鹿林山2003年至2020年成分變化趨勢 180
附錄五 鹿林山相關化學成分相關性矩陣 181
附錄六 採樣期間每日分析成分及註備事項 184
附錄七 採樣期間平均化學成分濃度 187
附錄八 口試委員意見回覆 190
參考文獻 Ackerman, A.S., Toon, O., Stevens, D., Heymsfield, A., Ramanathan, V., Welton, E., 2000. Reduction of tropical cloudiness by soot. Science 288, 1042-1047.
Akagi, S., Yokelson, R.J., Wiedinmyer, C., Alvarado, M., Reid, J., Karl, T., Crounse, J., Wennberg, P., 2011. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics 11, 4039-4072.
Anderson, T., Covert, D., Marshall, S., Laucks, M., Charlson, R., Waggoner, A., Ogren, J., Caldow, R., Holm, R., Quant, F., 1996. Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer. Journal of Atmospheric and Oceanic Technology 13, 967-986.
Anderson, T.L., Ogren, J.A., 1998. Determining aerosol radiative properties using the TSI 3563 integrating nephelometer. Aerosol Science and Technology 29, 57-69.
Andreae, M., Gelencsér, A., 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols.
Andreae, M.O., 1983. Soot carbon and excess fine potassium: Long-range transport of combustion-derived aerosols. Science 220, 1148-1151.
Andreae, M.O., Browell, E.V., Garstang, M., Gregory, G., Harriss, R., Hill, G., Jacob, D.J., Pereira, M., Sachse, G., Setzer, A., 1988. Biomass‐burning emissions and associated haze layers over Amazonia. Journal of Geophysical Research: Atmospheres 93, 1509-1527.
Andreae, M.O., Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global biogeochemical cycles 15, 955-966.
Arimoto, R., Duce, R., Savoie, D., Prospero, J., Talbot, R., Cullen, J., Tomza, U., Lewis, N., Ray, B., 1996. Relationships among aerosol constituents from Asia and the North Pacific during PEM‐West A. Journal of Geophysical Research: Atmospheres 101, 2011-2023.
Arnott, W.P., Hamasha, K., Moosmüller, H., Sheridan, P.J., Ogren, J.A., 2005. Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3-wavelength nephelometer. Aerosol Science and Technology 39, 17-29.
Backman, J., Schmeisser, L., Virkkula, A., Ogren, J.A., Asmi, E., Starkweather, S., Sharma, S., Eleftheriadis, K., Uttal, T., Jefferson, A., 2017. On Aethalometer measurement uncertainties and multiple scattering enhancement in the Arctic. Atmos. Measure. Tech 10, 5039-5062.
Betha, R., Behera, S.N., Balasubramanian, R., 2014. 2013 Southeast Asian smoke haze: fractionation of particulate-bound elements and associated health risk. Environmental science & technology 48, 4327-4335.
Bond, T.C., Anderson, T.L., Campbell, D., 1999. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Science & Technology 30, 582-600.
Bond, T.C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D.G., Trautmann, N.M., 2007. Historical emissions of black and organic carbon aerosol from energy‐related combustion, 1850–2000. Global biogeochemical cycles 21.
Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., DeAngelo, B.J., Flanner, M.G., Ghan, S., Kärcher, B., Koch, D., 2013. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of geophysical research: Atmospheres 118, 5380-5552.
Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.H., Klimont, Z., 2004. A technology‐based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research: Atmospheres 109.
Boreddy, S.K., Haque, M.M., Kawamura, K., 2018. Long-term (2001–2012) trends of carbonaceous aerosols from a remote island in the western North Pacific: an outflow region of Asian pollutants. Atmospheric Chemistry and Physics 18, 1291-1306.
Cabada, J.C., Pandis, S.N., Subramanian, R., Robinson, A.L., Polidori, A., Turpin, B., 2004. Estimating the secondary organic aerosol contribution to PM2. 5 using the EC tracer method special issue of aerosol science and technology on findings from the fine particulate matter supersites program. Aerosol Science and Technology 38, 140-155.
Cao, J.-J., Shen, Z.-X., Chow, J.C., Watson, J.G., Lee, S.-C., Tie, X.-X., Ho, K.-F., Wang, G.-H., Han, Y.-M., 2012. Winter and summer PM2. 5 chemical compositions in fourteen Chinese cities. Journal of the Air & Waste Management Association 62, 1214-1226.
Cao, J., Lee, S., Ho, K., Zou, S., Fung, K., Li, Y., Watson, J.G., Chow, J.C., 2004. Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China. Atmospheric Environment 38, 4447-4456.
Cao, J., Wu, F., Chow, J., Lee, S., Li, Y., Chen, S., An, Z., Fung, K., Watson, J., Zhu, C., 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi′an, China. Atmospheric Chemistry and Physics 5, 3127-3137.
Chaiyo, U., Garivait, S., Wilairat, D., 2011. Trace elements and carbon contents in particulate emissions from tropical deciduous forest fires in Chiangmai, Thailand, Proceedings from the 2nd International Conference on Environmental Science and Technology IPCBEE. IACSIT Press Singapore.
Chan, K., 2017a. Aerosol optical depths and their contributing sources in Taiwan. Atmospheric environment 148, 364-375.
Chan, K., 2017b. Biomass burning sources and their contributions to the local air quality in Hong Kong. Science of the Total Environment 596, 212-221.
Charlson, R.J., Schwartz, S., Hales, J., Cess, R.D., Coakley, J.J., Hansen, J., Hofmann, D., 1992. Climate forcing by anthropogenic aerosols. Science 255, 423-430.
Chen, W.-N., Chen, Y.-C., Kuo, C.-Y., Chou, C.-H., Cheng, C.-H., Huang, C.-C., Chang, S.-Y., Raman, M.R., Shang, W.-L., Chuang, T.-Y., 2014. The real-time method of assessing the contribution of individual sources on visibility degradation in Taichung. Science of the total environment 497, 219-228.
Chen, X., Lai, S., Gao, Y., Zhang, Y., Zhao, Y., Chen, D., Zheng, J., Zhong, L., Lee, S.-C., Chen, B., 2016. Reconstructed light extinction coefficients of fine particulate matter in rural Guangzhou, Southern China. Aerosol and Air Quality Research 16, 1981-1990.
Chen, Y., Bond, T.C., 2009. Light absorption by organic carbon from wood combustion. Atmos. Chem. Phys. Discuss 9, 20471-20513.
Chen, Y., Tian, C., Feng, Y., Zhi, G., Li, J., Zhang, G., 2015. Measurements of emission factors of PM2. 5, OC, EC, and BC for household stoves of coal combustion in China. Atmospheric Environment 109, 190-196.
Chen, Y., Xie, S.-d., Luo, B., Zhai, C.-z., 2017. Particulate pollution in urban Chongqing of southwest China: Historical trends of variation, chemical characteristics and source apportionment. Science of the Total Environment 584, 523-534.
Cheng, F.-Y., Yang, Z.-M., Ou-Yang, C.-F., Ngan, F., 2013. A numerical study of the dependence of long-range transport of CO to a mountain station in Taiwan on synoptic weather patterns during the Southeast Asia biomass-burning season. Atmospheric Environment 78, 277-290.
Cheung, H., Chou, C.C., Chen, M., Huang, W., Huang, S., Tsai, C., Lee, C., 2016. Seasonal variations of ultra-fine and submicron aerosols in Taipei, Taiwan: implications for particle formation processes in a subtropical urban area. Atmospheric Chemistry and Physics 16, 1317.
Chio, C.-P., Cheng, M.-T., Wang, C.-F., 2004. Source apportionment to PM10 in different air quality conditions for Taichung urban and coastal areas, Taiwan. Atmospheric Environment 38, 6893-6905.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., Green, M.C., 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere 54, 185-208.
Chow, J.C., Watson, J.G., Pritchett, L.C., Pierson, W.R., Frazier, C.A., Purcell, R.G., 1993. The DRI thermal/optical reflectance carbon analysis system: description, evaluation and applications in US air quality studies. Atmospheric Environment. Part A. General Topics 27, 1185-1201.
Chuang, M.-T., Chou, C.C.-K., Sopajaree, K., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, Y.-J., Lee, C.-T., 2013. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmospheric environment 78, 72-81.
Chuang, M.-T., Lee, C.-T., Chou, C.C.-K., Engling, G., Chang, S.-Y., Chang, S.-C., Sheu, G.-R., Lin, N.-H., Sopajaree, K., Chang, Y.-J., 2016. Aerosol transport from Chiang Mai, Thailand to Mt. Lulin, Taiwan–Implication of aerosol aging during long-range transport. Atmospheric Environment 137, 101-112.
Chuang, M.-T., Lee, C.-T., Chou, C.C.-K., Lin, N.-H., Sheu, G.-R., Wang, J.-L., Chang, S.-C., Wang, S.-H., Chi, K.H., Young, C.-Y., 2014. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin. Atmospheric Environment 89, 507-516.
Collaud Coen, M., Weingartner, E., Apituley, A., Ceburnis, D., Fierz-Schmidhauser, R., Flentje, H., Henzing, J., Jennings, S., Moerman, M., Petzold, A., 2010. Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms. Atmospheric Measurement Techniques 3, 457-474.
Dallmann, T.R., Onasch, T.B., Kirchstetter, T.W., Worton, D.R., Fortner, E., Herndon, S., Wood, E., Franklin, J., Worsnop, D., Goldstein, A., 2014. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer. Atmospheric Chemistry and Physics 14, 7585-7599.
Day, M.C., Zhang, M., Pandis, S.N., 2015. Evaluation of the ability of the EC tracer method to estimate secondary organic carbon. Atmospheric Environment 112, 317-325.
Deng, J., Xing, Z., Zhuang, B., Du, K., 2014. Comparative study on long-term visibility trend and its affecting factors on both sides of the Taiwan Strait. Atmospheric research 143, 266-278.
Dong, X., Fu, J.S., Huang, K., Lin, N.-H., Wang, S.-H., Yang, C.-E., 2018. Analysis of the Co-existence of Long-range Transport Biomass Burning and Dust in the Subtropical West Pacific Region. Scientific reports 8, 8962.
Duan, F., Liu, X., Yu, T., Cachier, H., 2004. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmospheric Environment 38, 1275-1282.
Forrister, H., Liu, J., Scheuer, E., Dibb, J., Ziemba, L., Thornhill, K.L., Anderson, B., Diskin, G., Perring, A.E., Schwarz, J.P., 2015. Evolution of brown carbon in wildfire plumes. Geophysical Research Letters 42, 4623-4630.
Gao, X., Yang, L., Cheng, S., Gao, R., Zhou, Y., Xue, L., Shou, Y., Wang, J., Wang, X., Nie, W., 2011. Semi-continuous measurement of water-soluble ions in PM2. 5 in Jinan, China: temporal variations and source apportionments. Atmospheric Environment 45, 6048-6056.
Gaudichet, A., Echalar, F., Chatenet, B., Quisefit, J., Malingre, G., Cachier, H., Buat-Menard, P., Artaxo, P., Maenhaut, W., 1995. Trace elements in tropical African savanna biomass burning aerosols. Journal of Atmospheric Chemistry 22, 19-39.
Geng, Y., Liu, W., Shan, J., Yao, J., Fan, X., Wei, N., Li, Y., 2010. Characterization of major water-soluble ions in size-fractionated particulate matters in Shanghai. China Environmental Science 30, 1585-1589.
Han, Y., Han, Z., Cao, J., Chow, J., Watson, J., An, Z., Liu, S., Zhang, R., 2008. Distribution and origin of carbonaceous aerosol over a rural high-mountain lake area, Northern China and its transport significance. Atmospheric Environment 42, 2405-2414.
Han, Y., Lee, S., Cao, J., Ho, K., An, Z., 2009. Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China. Atmospheric Environment 43, 6066-6073.
Hand, J., Malm, W., 2007. Review of aerosol mass scattering efficiencies from ground‐based measurements since 1990. Journal of Geophysical Research: Atmospheres 112.
Herner, J.D., Hu, S., Robertson, W.H., Huai, T., Chang, M.-C.O., Rieger, P., Ayala, A., 2011. Effect of advanced aftertreatment for PM and NO x reduction on heavy-duty diesel engine ultrafine particle emissions. Environmental science & technology 45, 2413-2419.
Hosseini, S., Qi, L., Cocker, D., Weise, D., Miller, A., Shrivastava, M., Miller, J., Mahalingam, S., Princevac, M., Jung, H., 2010. Particle size distributions from laboratory-scale biomass fires using fast response instruments. Atmos. Chem. Phys. 10: 8065-8076.
Hsiao, T.-C., Chen, W.-N., Ye, W.-C., Lin, N.-H., Tsay, S.-C., Lin, T.-H., Lee, C.-T., Chuang, M.-T., Pantina, P., Wang, S.-H., 2017. Aerosol optical properties at the Lulin Atmospheric Background Station in Taiwan and the influences of long-range transport of air pollutants. Atmospheric Environment 150, 366-378.
Huang, C., Wang, H., Li, L., Wang, Q., Lu, Q., De Gouw, J., Zhou, M., Jing, S., Lu, J., Chen, C., 2015. VOC species and emission inventory from vehicles and their SOA formation potentials estimation in Shanghai, China.
Huang, K., Fu, J.S., Hsu, N.C., Gao, Y., Dong, X., Tsay, S.-C., Lam, Y.F., 2013. Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA. Atmospheric environment 78, 291-302.
Huang, X., Qiu, R., Chan, C.K., Kant, P.R., 2011. Evidence of high PM2. 5 strong acidity in ammonia-rich atmosphere of Guangzhou, China: transition in pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42–]= 1.5. Atmospheric Research 99, 488-495.
Jung, C.-R., Hwang, B.-F., Chen, W.-T., 2018. Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2. 5 concentrations in Taiwan from 2005 to 2015. Environmental pollution 237, 1000-1010.
Junker, C., Wang, J.-L., Lee, C.-T., 2009. Evaluation of the effect of long-range transport of air pollutants on coastal atmospheric monitoring sites in and around Taiwan. Atmospheric Environment 43, 3374-3384.
Kanakidou, M., Seinfeld, J., Pandis, S., Barnes, I., Dentener, F.J., Facchini, M.C., Dingenen, R.V., Ervens, B., Nenes, A., Nielsen, C., 2005. Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics 5, 1053-1123.
Karlsson, P.E., Ferm, M., Tømmervik, H., Hole, L.R., Karlsson, G.P., Ruoho-Airola, T., Aas, W., Hellsten, S., Akselsson, C., Mikkelsen, T.N., 2013. Biomass burning in eastern Europe during spring 2006 caused high deposition of ammonium in northern Fennoscandia. Environmental Pollution 176, 71-79.
Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science & Technology 27, 2227-2235.
Keene, W.C., Pszenny, A.A., Galloway, J.N., Hawley, M.E., 1986. Sea‐salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research: Atmospheres 91, 6647-6658.
Khoder, M., 2002. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere 49, 675-684.
Kim, K.H., Sekiguchi, K., Kudo, S., Kinoshita, M., Sakamoto, K., 2013. Carbonaceous and ionic components in ultrafine and fine particles at four sampling sites in the vicinity of roadway intersection. Atmospheric Environment 74, 83-92.
Kirchstetter, T.W., Novakov, T., Hobbs, P.V., 2004. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. Journal of Geophysical Research: Atmospheres 109.
Kleeman, M.J., Schauer, J.J., Cass, G.R., 2000. Size and composition distribution of fine particulate matter emitted from motor vehicles. Environmental science & technology 34, 1132-1142.
Koch, D., 2001. Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM. Journal of Geophysical Research: Atmospheres 106, 20311-20332.
Kulmala, M., Korhonen, P., Vesala, T., Hansson, H.-C., Noone, K., Svenningsson, B., 1996. The effect of hygroscopicity on cloud droplet formation. Tellus B: Chemical and Physical Meteorology 48, 347-360.
Kumar, M., Parmar, K., Kumar, D., Mhawish, A., Broday, D., Mall, R., Banerjee, T., 2018. Long-term aerosol climatology over Indo-Gangetic Plain: Trend, prediction and potential source fields. Atmospheric environment 180, 37-50.
Kumar, M., Tiwari, S., Murari, V., Singh, A., Banerjee, T., 2015. Wintertime characteristics of aerosols at middle Indo-Gangetic Plain: Impacts of regional meteorology and long range transport. Atmospheric Environment 104, 162-175.
Lai, I.-C., Brimblecombe, P., 2020. Long-range Transport of Air Pollutants to Taiwan during the COVID-19 Lockdown in Hubei Province. Aerosol and Air Quality Research 20.
Laing, J.R., Jaffe, D.A., Hee, J.R., 2016. Physical and optical properties of aged biomass burning aerosol from wildfires in Siberia and the Western USA at the Mt. Bachelor Observatory. Atmospheric Chemistry & Physics 16.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., 2011. The enhancement of PM2. 5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric environment 45, 5784-5794.
Lee, C.-T., Ram, S.S., Nguyen, D.L., Chou, C.C., Chang, S.-Y., Lin, N.-H., Chang, S.-C., Hsiao, T.-C., Sheu, G.-R., Ou-Yang, C.-F., 2016. Aerosol chemical profile of near-source biomass burning smoke in Sonla, Vietnam during 7-SEAS campaigns in 2012 and 2013. Aerosol Air Qual. Res 16, 2603-2617.
Lee, H.-H., Bar-Or, R.Z., Wang, C., 2017. Biomass burning aerosols and the low-visibility events in Southeast Asia. Atmospheric Chemistry and Physics 17, 965-980.
Lee, H.-H., Iraqui, O., Wang, C., 2019. The impact of future fuel consumption on regional air quality in Southeast Asia. Scientific reports 9, 1-20.
Levin, E., McMeeking, G., Carrico, C., Mack, L., Kreidenweis, S., Wold, C., Moosmüller, H., Arnott, W., Hao, W., Collett Jr, J., 2010. Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME). Journal of Geophysical Research: Atmospheres 115.
Li, B., Zhang, J., Zhao, Y., Yuan, S., Zhao, Q., Shen, G., Wu, H., 2015. Seasonal variation of urban carbonaceous aerosols in a typical city Nanjing in Yangtze River Delta, China. Atmospheric Environment 106, 223-231.
Li, F., Schnelle-Kreis, J., Cyrys, J., Karg, E., Gu, J., Abbaszade, G., Orasche, J., Peters, A., Zimmermann, R., 2018. Organic speciation of ambient quasi-ultrafine particulate matter (PM0. 36) in Augsburg, Germany: Seasonal variability and source apportionment. Science of The Total Environment 615, 828-837.
Li, J., Pósfai, M., Hobbs, P.V., Buseck, P.R., 2003. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. Journal of Geophysical Research: Atmospheres 108.
Li, X., Wang, L., Wang, Y., Wen, T., Yang, Y., Zhao, Y., Wang, Y., 2012. Chemical composition and size distribution of airborne particulate matters in Beijing during the 2008 Olympics. Atmospheric Environment 50, 278-286.
Li, X., Wang, S., Duan, L., Hao, J., Nie, Y., 2009. Carbonaceous aerosol emissions from household biofuel combustion in China. Environmental science & technology 43, 6076-6081.
Liang, Y., Che, H., Gui, K., Zheng, Y., Yang, X., Li, X., Liu, C., Sheng, Z., Sun, T., Zhang, X., 2019. Impact of biomass burning in South and Southeast Asia on background aerosol in Southwest China. Aerosol and Air Quality Research 19, 1188-1204.
Lim, S., Lee, M., Lee, G., Kim, S., Yoon, S., Kang, K., 2012. Ionic and carbonaceous compositions of PM 10, PM 2.5 and PM 1.0 at Gosan ABC Superstation and their ratios as source signature. Atmospheric Chemistry and Physics 12, 2007-2024.
Lin, C.-Y., Hsu, H.-M., Lee, Y., Kuo, C., Sheng, Y.-F., Chu, D., 2009. A new transport mechanism of biomass burning from Indochina as identified by modeling studies. Atmospheric Chemistry and Physics 9, 7901-7911.
Lin, N.-H., Tsay, S.-C., Maring, H.B., Yen, M.-C., Sheu, G.-R., Wang, S.-H., Chi, K.H., Chuang, M.-T., Ou-Yang, C.-F., Fu, J.S., 2013. An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmospheric Environment 78, 1-19.
Liu, Y., Fan, Q., Chen, X., Zhao, J., Ling, Z., Hong, Y., Li, W., Chen, X., Wang, M., Wei, X., 2018. Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration on tropospheric ozone formation in China. Atmospheric Chemistry and Physics 18, 2709-2724.
Liu, Z., Xie, Y., Hu, B., Wen, T., Xin, J., Li, X., Wang, Y., 2017. Size-resolved aerosol water-soluble ions during the summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols. Chemosphere 183, 119-131.
Lu, H.-Y., Wu, Y.-L., Mutuku, J.K., Chang, K.-H., 2019. Various sources of PM2. 5 and their impact on the air quality in Tainan City, Taiwan. Aerosol and Air Quality Research 19, 601-619.
Mahapatra, P., Sinha, P., Boopathy, R., Das, T., Mohanty, S., Sahu, S., Gurjar, B., 2018. Seasonal progression of atmospheric particulate matter over an urban coastal region in peninsular India: role of local meteorology and long-range transport. Atmospheric Research 199, 145-158.
Masiello, C.A., 2004. New directions in black carbon organic geochemistry. Marine Chemistry 92, 201-213.
May, A., Lee, T., McMeeking, G., Akagi, S.K., Sullivan, A., Urbanski, S., Yokelson, R., Kreidenweis, S., 2015. Observations and analysis of organic aerosol evolution in some prescribed fire smoke plumes. Atmospheric Chemistry and Physics 15, 1953.
Mei, D., Zhu, Z., Mei, C., Chen, Z., Yuan, Y., 2019. Fractal morphology features and carbon component analysis of diesel particulates. Environmental Science and Pollution Research 26, 14014-14023.
Mendez-Espinosa, J.F., Rojas, N.Y., Vargas, J., Pachón, J.E., Belalcazar, L.C., Ramírez, O., 2020. Air quality variations in Northern South America during the COVID-19 lockdown. Science of the Total Environment 749, 141621.
Mousavi, A., Sowlat, M.H., Lovett, C., Rauber, M., Szidat, S., Boffi, R., Borgini, A., De Marco, C., Ruprecht, A.A., Sioutas, C., 2019. Source apportionment of black carbon (BC) from fossil fuel and biomass burning in metropolitan Milan, Italy. Atmospheric environment 203, 252-261.
Na, K., Sawant, A.A., Song, C., Cocker III, D.R., 2004. Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmospheric Environment 38, 1345-1355.
Niu, Z., Zhang, F., Chen, J., Yin, L., Wang, S., Xu, L., 2013. Carbonaceous species in PM2. 5 in the coastal urban agglomeration in the Western Taiwan Strait Region, China. Atmospheric research 122, 102-110.
Ogunjobi, K., He, Z., Kim, K., Kim, Y., 2004. Aerosol optical depth during episodes of Asian dust storms and biomass burning at Kwangju, South Korea. Atmospheric Environment 38, 1313-1323.
Ohta, S., Okita, T., 1990. A chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment. Part A. General Topics 24, 815-822.
Pandis, S.N., Seinfeld, J.H., 1989. Sensitivity analysis of a chemical mechanism for aqueous‐phase atmospheric chemistry. Journal of Geophysical Research: Atmospheres 94, 1105-1126.
Pani, S., Verma, S., 2014. Variability of winter and summertime aerosols over eastern India urban environment. Atmospheric research 137, 112-124.
Pani, S.K., Lee, C.-T., Chou, C.C.-K., Shimada, K., Hatakeyama, S., Takami, A., Wang, S.-H., Lin, N.-H., 2017. Chemical characterization of wintertime aerosols over islands and mountains in East Asia: Impacts of the continental Asian outflow. Aerosol Air Qual. Res 17, 3006-3036.
Pani, S.K., Lin, N.-H., Chantara, S., Wang, S.-H., Khamkaew, C., Prapamontol, T., Janjai, S., 2018. Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia. Science of The Total Environment 633, 892-911.
Panicker, A., Lee, D., Kumkar, Y., Kim, D., Maki, M., Uyeda, H., 2013. Decadal climatological trends of aerosol optical parameters over three different environments in South Korea. International Journal of Climatology 33, 1909-1916.
Pant, P., Lal, R.M., Guttikunda, S.K., Russell, A.G., Nagpure, A.S., Ramaswami, A., Peltier, R.E., 2019. Monitoring particulate matter in India: recent trends and future outlook. Air Quality, Atmosphere & Health 12, 45-58.
Park, S.S., Yu, J., 2016. Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments. Atmospheric Environment 136, 114-122.
Pengchai, P., Chantara, S., Sopajaree, K., Wangkarn, S., Tengcharoenkul, U., Rayanakorn, M., 2009. Seasonal variation, risk assessment and source estimation of PM 10 and PM10-bound PAHs in the ambient air of Chiang Mai and Lamphun, Thailand. Environmental Monitoring and Assessment 154, 197.
Pio, C., Legrand, M., Alves, C., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sánchez-Ochoa, A., Gelencsér, A., 2008. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment 42, 7530-7543.
Pitchford, M., Malm, W., Schichtel, B., Kumar, N., Lowenthal, D., Hand, J., 2007. Revised algorithm for estimating light extinction from IMPROVE particle speciation data. Journal of the Air & Waste Management Association 57, 1326-1336.
Plaza, J., Pujadas, M., Gómez-Moreno, F., Sánchez, M., Artíñano, B., 2011. Mass size distributions of soluble sulfate, nitrate and ammonium in the Madrid urban aerosol. Atmospheric environment 45, 4966-4976.
Pochanart, P., Hirokawa, J., Kajii, Y., Akimoto, H., Nakao, M., 1999. Influence of regional‐scale anthropogenic activity in northeast Asia on seasonal variations of surface ozone and carbon monoxide observed at Oki, Japan. Journal of Geophysical Research: Atmospheres 104, 3621-3631.
Pongpiachan, S., Ho, K.F., Cao, J., 2013. Estimation of Gas-particle partitioning Coefficients (K p) of Carcinogenic polycyclic Aromatic hydrocarbons in Carbonaceous Aerosols Collected at Chiang-Mai, Bangkok and hat-Yai, Thailand. Asian Pacific Journal of Cancer Prevention 14, 2461-2476.
Quinn, P., Bates, T., Coffman, D., Onasch, T., Worsnop, D., Baynard, T., De Gouw, J., Goldan, P., Kuster, W., Williams, E., 2006. Impacts of sources and aging on submicrometer aerosol properties in the marine boundary layer across the Gulf of Maine. Journal of Geophysical Research: Atmospheres 111.
Rajput, P., Sarin, M., 2014. Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: implications to organic mass-to-organic carbon ratio. Chemosphere 103, 74-79.
Ram, K., Sarin, M., 2010. Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India. Journal of Aerosol Science 41, 88-98.
Reddington, C., Butt, E., Ridley, D., Artaxo, P., Morgan, W., Coe, H., Spracklen, D., 2015. Air quality and human health improvements from reductions in deforestation-related fire in Brazil. Nature Geoscience 8, 768-771.
Reid, J., Koppmann, R., Eck, T., Eleuterio, D., 2004. A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles.
Reid, J.S., Eck, T.F., Christopher, S.a., Koppmann, R., Dubovik, O., Eleuterio, D., Holben, B.N., Reid, E.A., Zhang, J., 2005. A review of biomass burning emissions part III: intensive optical properties of biomass burning particles.
Richard, T., Hildemann, L., Kamens, R., Lee, S., Malm, W., Pandis, S., Pankow, J., Schauer, J., Watson, J., Zielinska, B., 2002. Secondary Organic Aerosols Research Strategy to Apportion Biogenic/Anthropogenic Sources: An Outcome of the First Secondary Organic Aerosols Workshop, February 4–5, 2002, Desert Research Institute, Reno, NV, Fort Lewis College, Durango, CO. Fort Lewis College, Durango, CO. Desert Research Institute, Reno, NV.
Saarikoski, S., Timonen, H., Saarnio, K., Aurela, M., Järvi, L., Keronen, P., Kerminen, V.-M., Hillamo, R., 2008. Sources of organic carbon in fine particulate matter in northern European urban air. Atmospheric Chemistry & Physics 8.
Safai, P., Devara, P., Raju, M., Vijayakumar, K., Rao, P., 2014a. Relationship between black carbon and associated optical, physical and radiative properties of aerosols over two contrasting environments. Atmospheric research 149, 292-299.
Safai, P., Raju, M., Rao, P., Pandithurai, G., 2014b. Characterization of carbonaceous aerosols over the urban tropical location and a new approach to evaluate their climatic importance. Atmospheric environment 92, 493-500.
Sang, X., Zhang, Z., Chan, C., Engling, G., 2013. Source categories and contribution of biomass smoke to organic aerosol over the southeastern Tibetan Plateau. Atmospheric environment 78, 113-123.
Sasaki, K., Kurita, H., Carmichael, G., Chang, Y.-S., Murano, K., Ueda, H., 1988. Behavior of sulfate, nitrate and other pollutants in the long-range transport of air pollution. Atmospheric Environment (1967) 22, 1301-1308.
Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R., 2002. Measurement of emissions from air pollution sources. 5. C1− C32 organic compounds from gasoline-powered motor vehicles. Environmental science & technology 36, 1169-1180.
Schmid, O., Artaxo, P., Arnott, W., Chand, D., Gatti, L.V., Frank, G., Hoffer, A., Schnaiter, M., Andreae, M., 2006. Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques. Atmospheric Chemistry and Physics 6, 3443-3462.
See, S.W., Balasubramanian, R., 2008. Chemical characteristics of fine particles emitted from different gas cooking methods. Atmospheric Environment 42, 8852-8862.
Seinfeld, J.H., Pandis, S.N., 2016. Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
Sillanpää, M., Frey, A., Hillamo, R., Pennanen, A., Salonen, R., 2005. Organic, elemental and inorganic carbon in particulate matter of six urban environments in Europe.
Singh, A., Chou, C.C.-K., Chang, S.-Y., Chang, S.-C., Lin, N.-H., Chuang, M.-T., Pani, S.K., Chi, K.H., Huang, C.-H., Lee, C.-T., 2020. Long-term (2003–2018) trends in aerosol chemical components at a high-altitude background station in the western North Pacific: Impact of long-range transport from continental Asia. Environmental Pollution 265, 114813.
Sioutas, C., Wang, P., Ferguson, S., Koutrakis, P., Mulik, J.D., 1996. Laboratory and field evaluation of an improved glass honeycomb denuder/filter pack sampler. Atmospheric Environment 30, 885-895.
Spurny, K.R., 2000. Aerosol chemical processes in the environment. CRC Press.
Stein, A., Draxler, R.R., Rolph, G.D., Stunder, B.J., Cohen, M., Ngan, F., 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society 96, 2059-2077.
Stocker, T.F., Qin, D., Plattner, G.-K., Alexander, L.V., Allen, S.K., Bindoff, N.L., Bréon, F.-M., Church, J.A., Cubasch, U., Emori, S., 2013. Technical summary, Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp. 33-115.
Stohl, A., Forster, C., Huntrieser, H., Mannstein, H., McMillan, W., Petzold, A., Schlager, H., Weinzierl, B., 2007. Aircraft measurements over Europe of an air pollution plume from Southeast Asia? Aerosol and chemical characterization.
Sun, H., Biedermann, L., Bond, T.C., 2007. Color of brown carbon: A model for ultraviolet and visible light absorption by organic carbon aerosol. Geophysical Research Letters 34.
Švédová, B., Kucbel, M., Raclavská, H., Růžičková, J., Raclavský, K., Sassmanová, V., 2019. Water-soluble ions in dust particles depending on meteorological conditions in urban environment. Journal of environmental management 237, 322-331.
Takahashi, K., 1986. Acid deposition and Japanese cedar decline in Kanto region, Japan. Jpn J For Environ 28, 11-17.
Tang, W., Zhao, C., Geng, F., Peng, L., Zhou, G., Gao, W., Xu, J., Tie, X., 2008. Study of ozone “weekend effect” in Shanghai. Science in China Series D: Earth Sciences 51, 1354-1360.
Tiitta, P., Vakkari, V., Croteau, P., Beukes, J., Van Zyl, P., Josipovic, M., Venter, A., Jaars, K., Pienaar, J., Ng, N., 2014. Chemical composition, main sources and temporal variability of PM 1 aerosols in southern African grassland. Atmospheric Chemistry and Physics 14, 1909-1927.
Tsai, J.-H., Chang, L.-P., Chiang, H.-L., 2013. Size mass distribution of water-soluble ionic species and gas conversion to sulfate and nitrate in particulate matter in southern Taiwan. Environmental Science and Pollution Research 20, 4587-4602.
Tsai, Y.I., Cheng, M.T., 2004. Characterization of chemical species in atmospheric aerosols in a metropolitan basin. Chemosphere 54, 1171-1181.
Tsai, Y.I., Sopajaree, K., Kuo, S.-C., Hsin, T.-Y., 2015a. Chemical composition and size-fractionated origins of aerosols over a remote coastal site in southern Taiwan. Aerosol and Air Quality Research 15, 2549-2570.
Tsai, Y.I., Sopajaree, K., Kuo, S.-C., Yu, S.-P., 2015b. Potential PM2. 5 impacts of festival-related burning and other inputs on air quality in an urban area of southern Taiwan. Science of the Total Environment 527, 65-79.
Turpin, B.J., Lim, H.-J., 2001. Species contributions to PM2. 5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Science & Technology 35, 602-610.
Vakkari, V., Beukes, J.P., Dal Maso, M., Aurela, M., Josipovic, M., van Zyl, P.G., 2018. Major secondary aerosol formation in southern African open biomass burning plumes. Nature Geoscience 11, 580.
Vakkari, V., Kerminen, V.M., Beukes, J.P., Tiitta, P., van Zyl, P.G., Josipovic, M., Venter, A.D., Jaars, K., Worsnop, D.R., Kulmala, M., 2014. Rapid changes in biomass burning aerosols by atmospheric oxidation. Geophysical Research Letters 41, 2644-2651.
Venkataraman, C., Reddy, C.K., Josson, S., Reddy, M.S., 2002. Aerosol size and chemical characteristics at Mumbai, India, during the INDOEX-IFP (1999). Atmospheric Environment 36, 1979-1991.
Wall, S.M., John, W., Ondo, J.L., 1988. Measurement of aerosol size distributions for nitrate and major ionic species. Atmospheric Environment (1967) 22, 1649-1656.
Wang-Li, L., 2013. Techniques for characterization of particulate matter emitted from animal feeding operations, Evaluating veterinary pharmaceutical behavior in the environment. ACS Publications, pp. 15-39.
Wang, G., Cheng, S., Li, J., Lang, J., Wen, W., Yang, X., Tian, L., 2015a. Source apportionment and seasonal variation of PM 2.5 carbonaceous aerosol in the Beijing-Tianjin-Hebei Region of China. Environmental monitoring and assessment 187, 143.
Wang, G., Fakhar, K., 2015. Lie symmetry analysis, nonlinear self-adjointness and conservation laws to an extended (2+ 1)-dimensional Zakharov–Kuznetsov–Burgers equation. Computers & Fluids 119, 143-148.
Wang, H., An, J., Cheng, M., Shen, L., Zhu, B., Li, Y., Wang, Y., Duan, Q., Sullivan, A., Xia, L., 2016a. One year online measurements of water-soluble ions at the industrially polluted town of Nanjing, China: Sources, seasonal and diurnal variations. Chemosphere 148, 526-536.
Wang, J., Ho, S.S.H., Cao, J., Huang, R., Zhou, J., Zhao, Y., Xu, H., Liu, S., Wang, G., Shen, Z., 2015b. Characteristics and major sources of carbonaceous aerosols in PM2. 5 from Sanya, China. Science of the Total Environment 530, 110-119.
Wang, J., Zhang, Y.-f., Feng, Y.-c., Zheng, X.-j., Jiao, L., Hong, S.-m., Shen, J.-d., Zhu, T., Ding, J., Zhang, Q., 2016b. Characterization and source apportionment of aerosol light extinction with a coupled model of CMB-IMPROVE in Hangzhou, Yangtze River Delta of China. Atmospheric Research 178, 570-579.
Wang, Q., Zhuang, G., Huang, K., Liu, T., Lin, Y., Deng, C., Fu, Q., Fu, J.S., Chen, J., Zhang, W., 2016c. Evolution of particulate sulfate and nitrate along the Asian dust pathway: Secondary transformation and primary pollutants via long-range transport. Atmospheric Research 169, 86-95.
Wang, Y., Hopke, P.K., Rattigan, O.V., Zhu, Y., 2011. Characterization of ambient black carbon and wood burning particles in two urban areas. Journal of Environmental Monitoring 13, 1919-1926.
Watson, J.G., Chow, J.C., Houck, J.E., 2001. PM2. 5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 43, 1141-1151.
Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., Baltensperger, U., 2003. Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. Journal of Aerosol Science 34, 1445-1463.
Wild, R.J., Dubé, W.P., Aikin, K.C., Eilerman, S.J., Neuman, J.A., Peischl, J., Ryerson, T.B., Brown, S.S., 2017. On-road measurements of vehicle NO2/NOx emission ratios in Denver, Colorado, USA. Atmospheric Environment 148, 182-189.
Xu, H., Cao, J., Chow, J.C., Huang, R.-J., Shen, Z., Chen, L.A., Ho, K.F., Watson, J.G., 2016. Inter-annual variability of wintertime PM2. 5 chemical composition in Xi′an, China: Evidences of changing source emissions. Science of the Total Environment 545, 546-555.
Xu, J., Wang, Q., Deng, C., McNeill, V.F., Fankhauser, A., Wang, F., Zheng, X., Shen, J., Huang, K., Zhuang, G., 2018. Insights into the characteristics and sources of primary and secondary organic carbon: High time resolution observation in urban Shanghai. Environmental Pollution 233, 1177-1187.
Xu, J., Zhang, Q., Wang, Z., Yu, G., Ge, X., Qin, X., 2015. Chemical composition and size distribution of summertime PM 2.5 at a high altitude remote location in the northeast of the Qinghai–Xizang (Tibet) Plateau: insights into aerosol sources and processing in free troposphere. Atmospheric Chemistry and Physics 15, 5069-5081.
Xu, L., Zhang, J., Sun, X., Xu, S., Shan, M., Yuan, Q., Liu, L., Du, Z., Liu, D., Xu, D., 2020. Variation in Concentration and Sources of Black Carbon in a Megacity of China During the COVID‐19 Pandemic. Geophysical research letters 47, e2020GL090444.
Yang, C.-F.O., Lin, N.-H., Sheu, G.-R., Lee, C.-T., Wang, J.-L., 2012. Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia. Atmospheric Environment 46, 279-288.
Yang, W., Wang, G., Bi, C., 2017. Analysis of long-range transport effects on PM2. 5 during a short severe haze in Beijing, China. Aerosol and Air Quality Research 17, 1610-1622.
Yin, L., Niu, Z., Chen, X., Chen, J., Zhang, F., Xu, L., 2014. Characteristics of water-soluble inorganic ions in PM 2.5 and PM 2.5–10 in the coastal urban agglomeration along the Western Taiwan Strait Region, China. Environmental Science and Pollution Research 21, 5141-5156.
Yu, G.-H., Cho, S.-Y., Bae, M.-S., Park, S.-S., 2014. Difference in production routes of water-soluble organic carbon in PM 2.5 observed during non-biomass and biomass burning periods in Gwangju, Korea. Environmental Science: Processes & Impacts 16, 1726-1736.
Zhang, F., Xu, L., Chen, J., Yu, Y., Niu, Z., Yin, L., 2012. Chemical compositions and extinction coefficients of PM2. 5 in peri-urban of Xiamen, China, during June 2009–May 2010. Atmospheric Research 106, 150-158.
Zhang, H., Zhang, L., Yang, L., Zhou, Q., Zhang, X., Xing, W., Hayakawa, K., Toriba, A., Tang, N., 2021. Impact of COVID-19 outbreak on the long-range transport of common air pollutants in KUWAMS. Chemical and Pharmaceutical Bulletin 69, 237-245.
Zhang, J., Tong, L., Huang, Z., Zhang, H., He, M., Dai, X., Zheng, J., Xiao, H., 2018. Seasonal variation and size distributions of water-soluble inorganic ions and carbonaceous aerosols at a coastal site in Ningbo, China. Science of the Total Environment 639, 793-803.
Zhao, J., Zhang, F., Xu, Y., Chen, J., 2011. Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city, Xiamen. Atmospheric Research 99, 546-562.
Zhao, Z., Cao, J., Shen, Z., Xu, B., Zhu, C., Chen, L.W.A., Su, X., Liu, S., Han, Y., Wang, G., 2013. Aerosol particles at a high‐altitude site on the Southeast Tibetan Plateau, China: implications for pollution transport from South Asia. Journal of Geophysical Research: Atmospheres 118, 11,360-311,375.
Zheng, J., Hu, M., Du, Z., Shang, D., Gong, Z., Qin, Y., Fang, J., Gu, F., Li, M., Peng, J., 2017. Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China. Atmospheric Chemistry and Physics 17, 6853-6864.
Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmospheric Environment 33, 4223-4233.
Zotter, P., Herich, H., Gysel, M., El-Haddad, I., Zhang, Y., Močnik, G., Hüglin, C., Baltensperger, U., Szidat, S., Prévôt, A.S., 2017. Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. Atmospheric Chemistry and Physics 17, 4229-4249.
王璐, 温天雪, 苗红妍, 高文康, 王跃思, 2016. 太原大气颗粒物中水溶性无机离子质量浓度及粒径分布特征. 环境科学 37, 3249-3257.
陳聖中, 2012. 台灣都市地區細懸浮微粒 (PM2.5) 手動採樣分析探討. 國立中央大學環境工程研究所碩士論文.
指導教授 李崇德(Chung-Te Lee) 審核日期 2021-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明