博碩士論文 107326008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.133.115.53
姓名 鄭念媛(Nien-Yuan Cheng)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 不同料源製成之市售堆肥其抗生素抗性基因含量調查
(Survey of antibiotic resistance gene levels harbored in commercially available composts derived from different feedstock)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 環保署與農委會近年來大力推動畜牧糞尿資源化政策,建議畜牧業者可不再透過之前的三段式處理,只需經過一般的厭氧消化程序,即可將牧場所產生的畜牧排泄物轉化為沼渣沼液,並當作肥料施用於農地,讓原本該被排放到承受水體而可能造成污染擴散的畜牧糞尿能被「農地農用」,呼應當前的「循環經濟」政策。不過,既有的文獻已指出,傳統的中、常溫厭氧消化處理對於禽畜糞尿所含的抗生素抗性基因(ARG)濃度大多無法有效削減,而ARG濃度在環境持續升高的後果,已被國際權威組織預測將嚴重威脅現代醫學的成就,某種程度暗示著如要推動沼液沼渣作為農地肥分使用的政策時,應先審慎調查確認是否將因此而衍生出土壤環境的抗藥性增長問題。有鑒於ARG的濃度尚未有法規規範,本研究針對行之有年的「堆肥」進行ARG的含量調查,藉此讓沼液沼渣所造成的環境抗生素抗藥性的風險評估有參考對比值。
本研究所選的28件堆肥樣品涵蓋非禽畜糞、牛糞、豬糞、雞糞等不同原料,以基因即時定量技術,定量樣品中的目標基因(包括各個ARG、移動基因元件以及16S rRNA基因),並以統計分析各類樣品彼此之間的相關性與差異性。調查結果顯示: (1)含禽畜糞便的堆肥中抗生素抗藥性基因含量比非禽畜糞的堆肥來的高;(2)不論是非禽畜糞便還是含禽畜糞之堆肥其主要以磺胺類抗生素抗藥性基因以及第一類整合子基因為主;(3)堆肥中的重金屬鋅、銅與抗生素抗藥性基因呈現負相關;(4)堆肥中殘留的抗生素與抗生素抗藥性基因之間是具有相關性;(5)當堆肥進入土壤環境後主要是以四環素類、磺胺類抗生素抗藥性基因以及第一類整合子基因為主;(6)堆肥中的抗生素抗藥性基因及第一類整合子進入土壤環境後,其在環境中的宿命不會因其料源不同而有所差異。這些結果說明不同料源的堆肥中的抗生素抗藥性基因及第一類整合子的豐度確實有所不同,但其對於抗生素耐藥性基因進入環境之影響並不會因為其原料不同而有所差異。此外,對於堆肥中抗生素抗藥性基因及第一類整合子在環境中降解速率值得加以追蹤及確認。
摘要(英) In recent years, the Environmental Protection Agency and the Committee of Agriculture have vigorously promoted the policy of resource utilization of livestock manure and urine, suggesting that livestock farmers can no longer go through the previous three-stage treatment, but only need to go through the general anaerobic digestion process to convert the livestock excrement produced by the pasture. It is used as biogas residue and applied to agricultural land as fertilizer, so that livestock manure that should have been discharged into receiving water bodies and may cause pollution to spread can be used for "farmland agriculture", echoing the current "circular economy" policy. However, the existing literature has pointed out that the traditional anaerobic digestion treatment at room temperature cannot effectively reduce the concentration of antibiotic resistance genes (ARG) contained in livestock manure and urine, and the consequence of the continuous increase of ARG concentration in the environment has been It is predicted by international authoritative organizations that it will seriously threaten the achievements of modern medicine. To some extent, it implies that if we want to promote the policy of using biogas residue as agricultural land fertilizer, we should conduct a careful investigation to confirm whether the drug resistance of the soil environment will be derived from its growth issues. Because the concentration of ARG has not yet been regulated by regulations, this study conducted a survey on the content of ARG in the long-established "compost", to provide a reference and comparative value for the risk assessment of environmental antibiotic resistance caused by biogas slurry and residue.
The 28 compost samples selected in this study covered different raw materials such as non-poultry animal manure, cow manure, pig manure, chicken manure, etc. The target genes (including various ARGs, mobile genetic elements, and 16S rRNA genes) in the samples were quantified by real-time gene quantitative technology, and statistically analyzed the correlation and difference between various samples. The survey results showed that: (1) the content of antibiotic resistance genes in the manure compost was higher than that of the non-manure compost; (2) both non-manure and manure compost mainly contained sulfonamides antibiotic resistance genes and intI1; (3) heavy metals zinc and copper in compost are negatively correlated with antibiotic resistance genes; (4) the residual antibiotics in compost and antibiotic resistance genes are closely related. (5) When the compost enters the soil environment, it is mainly composed of tetracycline and sulfonamide antibiotic resistance genes and intI1; (6) The antibiotic resistance genes and intI1 in compost After entering the soil environment, its fate in the environment will not vary due to different sources. These results indicate that the abundance of antibiotic resistance genes and intI1 in composts from different feedstock are indeed different, but their impact on the entry of antibiotic resistance genes into the environment will not be affected by different raw materials. difference. In addition, the degradation rates of antibiotic resistance genes and intI1 in compost in the environment deserve to be tracked and confirmed.
關鍵字(中) ★ 禽畜糞
★ 堆肥
★ 抗生素抗藥性基因
★ 農地土壤
關鍵字(英) ★ manure
★ compost
★ antibiotic resistance gene
★ agriculture soil
論文目次 致謝................................ I
摘要................................ II
ABSTRACT............................ III
目錄................................. V
表目錄............................... VII
圖目錄............................... VIII
第一章 前言............................... 1
1.1 研究緣起及背景...................... 1
1.1.1 抗生素的作用........................ 1
1.1.2 抗生素抗藥性........................ 2
1.1.3 抗生素抗藥性對於畜牧業的影響.............. 3
1.1.4 抗生素抗藥性與畜牧廢棄物產品之關係... 5
1.1.5 抗生素抗藥性之於畜牧廢棄物之處理方式.... 6
1.1.6 抗生素抗藥性與土壤之關係................ 7
1.1.7 整合子(integron)與環境之關係........... 7
1.2 研究目的............................... 8
第二章 研究方法.................................9
2.1 實驗流程................................ 9
2.2 堆肥之選取及收集.................. 10
2.3 土壤縮模試驗之架設................ 15
2.4 堆肥及土壤之物化分析.............. 15
2.4.1 含水量(water content) (AFS2901-1)...... 15
2.4.2 pH (NIEA S410.62C).............. 16
2.4.3 電導度(EC) (AFS2905-1)........... 16
2.4.4 土壤有機質測定(organic matter, OM)...... 16
2.4.5 有機肥料銅、鋅濃度分析─王水消化法(NIEA S321.65B).. 17
2.4.6 有機肥料中砷濃度分析─微波消化法......... 17
2.4.7 土壤中重金屬分析─微波消化法............ 17
2.4.8 土壤顆粒比重分析.................. 17
2.4.9 土壤最大保水力(maximum water-holding capacity).. 18
2.4.10 土壤粒徑分析─比重計法.............. 18
2.4.11 堆肥中抗生素殘留量分析............. 19
2.5 樣品中基因的提取及目標基因的定量........ 20
2.5.1 DNA提取.......................... 20
2.5.2 樣品DNA純化....................... 20
2.5.3 聚合酶連鎖反應(polymerase chain reaction, PCR)分析 20
2.5.4 目標基因之標準品製備................ 24
2.5.5 目標基因定量─qPCR分析................ 24
2.6 數據分析與統計分析................ 27
2.6.1 堆肥ARGs之顯著性分析................ 27
2.6.2 縮模試驗ARGs之顯著性分析................ 27
2.6.4 熱點分析(heatmap)................ 28
2.6.5 Spearman等級相關係數分析................ 28
2.6.6 冗餘分析(redundancy analysis, RDA)................ 28
2.7 試劑與儀器................ 28
第三章 結果與討論................ 30
3.1 堆肥樣品之檢測................ 30
3.1.1 堆肥之物化特性................ 30
3.1.2 堆肥中的ARGs絕對豐度之調查................ 38
3.1.3 堆肥中ARGs及intI1相對豐度之調查................ 44
3.1.4 堆肥中抗生素殘留與ARGs之關係................ 49
3.1.5 有機肥料中ARGs與intI1之關係................ 52
3.2 堆肥土壤縮模試驗................ 57
3.2.1 堆肥土壤縮模試驗中抗生素抗藥性基因之絕對豐度................ 57
3.2.2 堆肥土壤縮模試驗中ARGs、intI1之相對豐度................ 63
3.2.3 縮模試驗中抗生素抗藥性基因變化率................ 68
3.2.4 堆肥土壤縮模試驗中ARGs與時間之關係................ 76
3.3 抗生素抗藥性在環境之意義及風險................ 79
第四章 結論與建議................ 81
4.1 結論................ 81
4.2 建議................ 82
參考文獻 ................83
附錄................ 89
參考文獻 (1) Cromwell, G. Antimicrobial and promicrobial agents. Swine nutrition 2001.
(2) Mann, A.; Nehra, K.; Rana, J.; Dahiya, T. Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance. Current Research in Microbial Sciences 2021, 2, 100030.
(3) Ventola, C. L. The Antibiotic Resistance Crisis Part 1: Causes and Threats. Pharmacy and therapeutics 2015, 40 (4), 277.
(4) Kohanski, M. A.; Dwyer, D. J.; Collins, J. J. How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology 2010, 8 (6), 423-435. DOI: 10.1038/nrmicro2333.
(5) Mann, J. Antibiotics: Actions, Origins, Resistance. Natural Product Reports 2005, 22 (2), 304. DOI: 10.1039/b417591n.
(6) Espeli, O.; Marians, K. J. Untangling intracellular DNA topology. Molecular Microbiology 2004, 52 (4), 925-931. DOI: 10.1111/j.1365-2958.2004.04047.x.
(7) Ayoub Moubareck, C. Polymyxins and Bacterial Membranes: A Review of Antibacterial Activity and Mechanisms of Resistance. Membranes 2020, 10 (8), 181. DOI: 10.3390/membranes10080181.
(8) Epand, R. M.; Walker, C.; Epand, R. F.; Magarvey, N. A. Molecular mechanisms of membrane targeting antibiotics. Biochimica et Biophysica Acta (BBA) - Biomembranes 2016, 1858 (5), 980-987. DOI: https://doi.org/10.1016/j.bbamem.2015.10.018.
(9) KONG, K. F.; Schneper, L.; Mathee, K. Beta‐lactam antibiotics: from antibiosis to resistance and bacteriology. Apmis 2010, 118 (1), 1-36.
(10) Fernández, V.; Aguilar; Rojo. Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications. International Journal of Molecular Sciences 2019, 20 (20), 4996. DOI: 10.3390/ijms20204996.
(11) Allen, H. K.; Donato, J.; Wang, H. H.; Cloud-Hansen, K. A.; Davies, J.; Handelsman, J. Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology 2010, 8 (4), 251-259. Blair, J. M. A.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology 2015, 13 (1), 42-51. DOI: 10.1038/nrmicro3380.
(12) Chee-Sanford, J. C.; Mackie, R. I.; Koike, S.; Krapac, I. G.; Lin, Y.-F.; Yannarell, A. C.; Maxwell, S.; Aminov, R. I. Fate and Transport of Antibiotic Residues and Antibiotic Resistance Genes following Land Application of Manure Waste. Journal of Environmental Quality 2009, 38 (3), 1086-1108. DOI: 10.2134/jeq2008.0128.
(13) Choi, U.; Lee, C.-R. Distinct Roles of Outer Membrane Porins in Antibiotic Resistance and Membrane Integrity in Escherichia coli. Frontiers in Microbiology 2019, 10, Original Research. DOI: 10.3389/fmicb.2019.00953.
(14) Delmar, J. A.; Su, C.-C.; Yu, E. W. Bacterial Multidrug Efflux Transporters. Annual Review of Biophysics 2014, 43 (1), 93-117. DOI: 10.1146/annurev-biophys-051013-022855.
(15) Webber, M. A.; Piddock, L. J. V. The importance of efflux pumps in bacterial antibiotic resistance. Journal of Antimicrobial Chemotherapy 2003, 51 (1), 9-11. DOI: 10.1093/jac/dkg050 (acccessed 6/17/2022).
(16) Nikaido, H. Multidrug resistance in bacteria. Annu Rev Biochem 2009, 78, 119-146. DOI: 10.1146/annurev.biochem.78.082907.145923.
(17) Khan, S. N.; Khan, A. U. Breaking the spell: combating multidrug resistant ‘superbugs’. Frontiers in microbiology 2016, 7, 174.
(18) Schwartz, T.; Kohnen, W.; Jansen, B.; Obst, U. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water bio¢lms. FEMS Microbiology Ecology 2003, 43 (3), 325-335.
(19) Chee‐Sanford, J. C.; Mackie, R. I.; Koike, S.; Krapac, I. G.; Lin, Y. F.; Yannarell, A. C.; Maxwell, S.; Aminov, R. I. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Journal of environmental quality 2009, 38 (3), 1086-1108.
(20) Jernberg, C.; Löfmark, S.; Edlund, C.; Jansson, J. K. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 2010, 156 (11), 3216-3223.
(21) Andremont, A. Commensal flora may play key role in spreading antibiotic resistance. Asm News 2003, 69 (12), 601-607.
(22) Organization, W. H. Antimicrobial resistance: global report on surveillance; World Health Organization, 2014.
(23) Dodd, M. C. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. Journal of Environmental Monitoring 2012, 14 (7), 1754. DOI: 10.1039/c2em00006g.
(24) Davison, J. Genetic exchange between bacteria in the environment. Plasmid 1999, 42 (2), 73-91.
(25) Vikesland, P. J.; Pruden, A.; Alvarez, P. J. J.; Aga, D.; Burgmann, H.; Li, X. D.; Manaia, C. M.; Nambi, I.; Wigginton, K.; Zhang, T.; et al. Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance. Environ Sci Technol 2017, 51 (22), 13061-13069. DOI: 10.1021/acs.est.7b03623.
(26) Ben, W.; Wang, J.; Cao, R.; Yang, M.; Zhang, Y.; Qiang, Z. Distribution of antibiotic resistance in the effluents of ten municipal wastewater treatment plants in China and the effect of treatment processes. Chemosphere 2017, 172, 392-398.
(27) LaPara, T. M.; Burch, T. R.; McNamara, P. J.; Tan, D. T.; Yan, M.; Eichmiller, J. J. Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior Harbor. Environmental science & technology 2011, 45 (22), 9543-9549.
(28) Zhu, Y.-G.; Johnson, T. A.; Su, J.-Q.; Qiao, M.; Guo, G.-X.; Stedtfeld, R. D.; Hashsham, S. A.; Tiedje, J. M. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences 2013, 110 (9), 3435-3440. DOI: 10.1073/pnas.1222743110.
(29) Echeverria-Palencia, C. M.; Thulsiraj, V.; Tran, N.; Ericksen, C. A.; Melendez, I.; Sanchez, M. G.; Walpert, D.; Yuan, T.; Ficara, E.; Senthilkumar, N.; et al. Disparate Antibiotic Resistance Gene Quantities Revealed across 4 Major Cities in California: A Survey in Drinking Water, Air, and Soil at 24 Public Parks. ACS Omega 2017, 2 (5), 2255-2263. DOI: 10.1021/acsomega.7b00118.
(30) Pei, R.; Kim, S.-C.; Carlson, K. H.; Pruden, A. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water research 2006, 40 (12), 2427-2435.
(31) 簡妤儒. 抗生素的用與禁--台灣養雞業和養豬業的產業結構與用藥邏輯. 科技部補助專題研究計畫成果報告 2016.
(32) Xie, W. Y.; Shen, Q.; Zhao, F. Antibiotics and antibiotic resistance from animal manures to soil: a review. European journal of soil science 2018, 69 (1), 181-195.
(33) Bao, Y.; Zhou, Q.; Guan, L.; Wang, Y. Depletion of chlortetracycline during composting of aged and spiked manures. Waste Manag 2009, 29 (4), 1416-1423. DOI: 10.1016/j.wasman.2008.08.022.
(34) Schwartz, T.; Kohnen, W.; Jansen, B.; Obst, U. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS microbiology ecology 2003, 43 (3), 325-335.
(35) Knapp, C. W.; Dolfing, J.; Ehlert, P. A.; Graham, D. W. Evidence of Increasing Antibiotic Resistance Gene Abundances in Archived Soils since 1940. Environmental science & technology 2010, 44 (2), 580-587.
(36) Anadón, A. WS14 The EU ban of antibiotics as feed additives (2006): alternatives and consumer safety. Journal of Veterinary Pharmacology and Therapeutics 2006, 29, 41-44.
(37) Van Boeckel, T. P.; Brower, C.; Gilbert, M.; Grenfell, B. T.; Levin, S. A.; Robinson, T. P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci U S A 2015, 112 (18), 5649-5654. DOI: 10.1073/pnas.1503141112.
(38) 程梅萍; 蕭庭訓; 廖仁寶. 豬糞尿和廢水中抗生素與四環素抗性基因流布研究. 畜產研究 2018, 51 (1), 39-51.
(39) Zalewska, M.; Błażejewska, A.; Czapko, A.; Popowska, M. Antibiotics and Antibiotic Resistance Genes in Animal Manure – Consequences of Its Application in Agriculture. Frontiers in Microbiology 2021, 12, Review. DOI: 10.3389/fmicb.2021.610656.
(40) Yang, Q.; Tian, T.; Niu, T.; Wang, P. Molecular characterization of antibiotic resistance in cultivable multidrug-resistant bacteria from livestock manure. Environ Pollut 2017, 229, 188-198. DOI: 10.1016/j.envpol.2017.05.073.
(41) Heuer, H.; Schmitt, H.; Smalla, K. Antibiotic resistance gene spread due to manure application on agricultural fields. Current opinion in microbiology 2011, 14 (3), 236-243.
(42) 陳明晉; 廖秋榮; 蔡宜峰. 堆肥技術與設備手冊及案例彙編. 經濟部工業局, 財團法人台灣綠色生產力基金會 2005.
(43) Zhou, Z.; Yao, H. Effects of Composting Different Types of Organic Fertilizer on the Microbial Community Structure and Antibiotic Resistance Genes. Microorganisms 2020, 8 (2), 268. DOI: 10.3390/microorganisms8020268.
(44) Mitchell, S. M.; Ullman, J. L.; Bary, A.; Cogger, C. G.; Teel, A. L.; Watts, R. J. Antibiotic degradation during thermophilic composting. Water, Air, Soil Pollut. 2015, 226, 13.
(45) Youngquist, C. P.; Mitchell, S. M.; Cogger, C. G. Fate of antibiotics and antibiotic resistance during digestion and composting: a review. Journal of Environmental Quality 2016, 45 (2), 537-545.
(46) Sun, W.; Qian, X.; Gu, J.; Wang, X.-J.; Duan, M.-L. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure. Scientific Reports 2016, 6 (1), 30237. DOI: 10.1038/srep30237.
(47) Oliver, J. P.; Gooch, C. A.; Lansing, S.; Schueler, J.; Hurst, J. J.; Sassoubre, L.; Crossette, E. M.; Aga, D. S. Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. Journal of Dairy Science 2020, 103 (2), 1051-1071. DOI: 10.3168/jds.2019-16778.
(48) Xie, W. Y.; Yang, X. P.; Li, Q.; Wu, L. H.; Shen, Q. R.; Zhao, F. J. Changes in antibiotic concentrations and antibiotic resistome during commercial composting of animal manures. Environ Pollut 2016, 219, 182-190. DOI: 10.1016/j.envpol.2016.10.044.
(49) Qian, X.; Gu, J.; Sun, W.; Wang, X. J.; Su, J. Q.; Stedfeld, R. Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting. J Hazard Mater 2018, 344, 716-722. DOI: 10.1016/j.jhazmat.2017.11.020.
(50) D’Costa, V. M.; King, C. E.; Kalan, L.; Morar, M.; Sung, W. W.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R. Antibiotic resistance is ancient. Nature 2011, 477 (7365), 457-461.
(51) Barka, E. A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Klenk, H.-P.; Clément, C.; Ouhdouch, Y.; Wezel, G. P. v. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiology and Molecular Biology Reviews 2016, 80 (1), 1-43. DOI: doi:10.1128/MMBR.00019-15.
(52) Chen, Q.; An, X.; Li, H.; Su, J.; Ma, Y.; Zhu, Y. G. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ Int 2016, 92-93, 1-10. DOI: 10.1016/j.envint.2016.03.026.
(53) Wei, Z.; Shen, W.; Feng, K.; Feng, Y.; He, Z.; Li, Y.; Jiang, C.; Liu, S.; Zhu, Y.-G.; Deng, Y. Organic fertilizer potentiates the transfer of typical antibiotic resistance gene among special bacterial species. Journal of Hazardous Materials 2022, 435, 128985. DOI: https://doi.org/10.1016/j.jhazmat.2022.128985.
(54) Zhang, Y. J.; Hu, H. W.; Gou, M.; Wang, J. T.; Chen, D.; He, J. Z. Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environ Pollut 2017, 231 (Pt 2), 1621-1632. DOI: 10.1016/j.envpol.2017.09.074.
(55) Li, J.; Xin, Z.; Zhang, Y.; Chen, J.; Yan, J.; Li, H.; Hu, H. Long-term manure application increased the levels of antibiotics and antibiotic resistance genes in a greenhouse soil. Applied Soil Ecology 2017, 121, 193-200. DOI: 10.1016/j.apsoil.2017.10.007.
(56) Zhang, Y. J.; Hu, H. W.; Chen, Q. L.; Singh, B. K.; Yan, H.; Chen, D.; He, J. Z. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environ Int 2019, 130, 104912. DOI: 10.1016/j.envint.2019.104912.
(57) Michael, C. A.; Dominey-Howes, D.; Labbate, M. The Antimicrobial Resistance Crisis: Causes, Consequences, and Management. Frontiers in Public Health 2014, 2, Review. DOI: 10.3389/fpubh.2014.00145.
(58) Domingues, S.; da Silva, G. J.; Nielsen, K. M. Global dissemination patterns of common gene cassette arrays in class 1 integrons. Microbiology 2015, 161 (7), 1313-1337. DOI: https://doi.org/10.1099/mic.0.000099.
(59) Gillings, M. R. Class 1 integrons as invasive species. Current Opinion in Microbiology 2017, 38, 10-15. DOI: https://doi.org/10.1016/j.mib.2017.03.002.
(60) Burch, T. R.; Sadowsky, M. J.; Lapara, T. M. Fate of Antibiotic Resistance Genes and Class 1 Integrons in Soil Microcosms Following the Application of Treated Residual Municipal Wastewater Solids. Environmental Science & Technology 2014, 48 (10), 5620-5627. DOI: 10.1021/es501098g.
(61) Gillings, M. R.; Gaze, W. H.; Pruden, A.; Smalla, K.; Tiedje, J. M.; Zhu, Y. G. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J 2015, 9 (6), 1269-1279. DOI: 10.1038/ismej.2014.226.
(62) Lacotte, Y.; Ploy, M.-C.; Raherison, S. Class 1 integrons are low-cost structures in Escherichia coli. The ISME Journal 2017, 11 (7), 1535-1544. DOI: 10.1038/ismej.2017.38.
(63) Palencia, C. M. E. Distribution, Emergence, Fate and Transport of Antibiotic Resistance Genes in Environmental Compartments: Studies at the Nexus of Human-Environment Interaction; University of California, Los Angeles, 2018.
(64) Zhou, X.; Qiao, M.; Su, J.-Q.; Zhu, Y.-G. High-throughput characterization of antibiotic resistome in soil amended with commercial organic fertilizers. Journal of Soils and Sediments 2019, 19 (2), 641-651. DOI: 10.1007/s11368-018-2064-6.
(65) Carter, L. J.; Harris, E.; Williams, M.; Ryan, J. J.; Kookana, R. S.; Boxall, A. B. A. Fate and Uptake of Pharmaceuticals in Soil–Plant Systems. Journal of Agricultural and Food Chemistry 2014, 62 (4), 816-825. DOI: 10.1021/jf404282y.
(66) Ng, L.-K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Molecular and cellular probes 2001, 15 (4), 209-215.
(67) Aminov, R.; Garrigues-Jeanjean, N.; Mackie, R. Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Applied and environmental microbiology 2001, 67 (1), 22-32.
(68) Marti, E.; Jofre, J.; Balcazar, J. L. Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant. PloS one 2013, 8 (10), e78906.
(69) Xi, C.; Zhang, Y.; Marrs, C. F.; Ye, W.; Simon, C.; Foxman, B.; Nriagu, J. Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Applied and environmental microbiology 2009, 75 (17), 5714-5718.
(70) Alexander, J.; Bollmann, A.; Seitz, W.; Schwartz, T. Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria. Science of the Total Environment 2015, 512, 316-325.
(71) Chen, J.; Yu, Z.; Michel Jr, F. C.; Wittum, T.; Morrison, M. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Applied and environmental microbiology 2007, 73 (14), 4407-4416.
(72) Luo, Y.; Mao, D.; Rysz, M.; Zhou, Q.; Zhang, H.; Xu, L.; JJ Alvarez, P. Trends in Antibiotic Resistance Genes Occurrence in the Haihe River, China. Environmental science & technology 2010, 44 (19), 7220-7225.
(73) Deng, J.-Y. 重金屬生物有效性對於抗生素抗性基因在農地土壤的分佈與持續之影響. National Central University, 2018. Chang, C.-S. 抗生素抗性菌與抗性基因在污水處理程序中的動態變化. National Central University, 2019.
(74) Deng, W.; Wang, Y.; Liu, Z.; Cheng, H.; Xue, Y. HemI: A Toolkit for Illustrating Heatmaps. PLoS ONE 2014, 9 (11), e111988. DOI: 10.1371/journal.pone.0111988.
(75) 陳炳良. 有機堆肥施用對土壤性質之影響. 國立屏東科技大學, 2003. 陳尊賢. 長期施用豬糞堆肥對土壤中重金屬之累積及合理施用量之評估. 農業試驗所特刊第 50 號 1995.
(76) Gondek, M.; Weindorf, D. C.; Thiel, C.; Kleinheinz, G. Soluble Salts in Compost and Their Effects on Soil and Plants: A Review. Compost Science & Utilization 2020, 28 (2), 59-75. DOI: 10.1080/1065657x.2020.1772906.
(77) 林浩潭. 第四章 施肥與土壤鹽分累積; 行政院農業委員會農業藥物毒物試驗所.
(78) Chang, E.-H.; Chung, R.-S.; Tsai, Y.-H. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Science and Plant Nutrition 2007, 53 (2), 132-140. DOI: 10.1111/j.1747-0765.2007.00122.x.
(79) Rutherford, D.; Bednar, A.; Garbarino, J.; Needham, R.; Staver, K.; Wershaw, R. Environmental Fate of Roxarsone in Poultry Litter. Part II. Mobility of Arsenic in Soils Amended with Poultry Litter. Environmental science & technology 2003, 37 (8), 1515-1520.
(80) Mandal, B. K.; Suzuki, K. T. Arsenic round the world: a review. Talanta 2002, 58 (1), 201-235.
(81) Xie, W.-Y.; Wang, Y.-T.; Yuan, J.; Hong, W.-D.; Niu, G.-Q.; Zou, X.; Yang, X.-P.; Shen, Q.; Zhao, F.-J. Prevalent and highly mobile antibiotic resistance genes in commercial organic fertilizers. Environment International 2022, 162, 107157. DOI: https://doi.org/10.1016/j.envint.2022.107157.
(82) Wang, Q.; Guo, M.; Yates, S. R. Degradation kinetics of manure-derived sulfadimethoxine in amended soil. Journal of agricultural and food chemistry 2006, 54 (1), 157-163.
(83) Kay, P.; Blackwell, P. A.; Boxall, A. B. Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environmental Toxicology and Chemistry: An International Journal 2004, 23 (5), 1136-1144.
(84) Dolliver, H.; Gupta, S.; Noll, S. Antibiotic Degradation during Manure Composting. Journal of Environmental Quality 2008, 37 (3), 1245-1253. DOI: 10.2134/jeq2007.0399.
(85) Chang, Q.; Wang, W.; Regev‐Yochay, G.; Lipsitch, M.; Hanage, W. P. Antibiotics in agriculture and the risk to human health: how worried should we be? Evolutionary Applications 2015, 8 (3), 240-247. DOI: 10.1111/eva.12185.
(86) Min Jang, H.; Choi, S.; Shin, J.; Kan, E.; Mo Kim, Y. Additional reduction of antibiotic resistance genes and human bacterial pathogens via thermophilic aerobic digestion of anaerobically digested sludge. Bioresource Technology 2019, 273, 259-268. DOI: https://doi.org/10.1016/j.biortech.2018.11.027.
(87) He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.; Alvarez, P. J. J. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. npj Clean Water 2020, 3 (1). DOI: 10.1038/s41545-020-0051-0.
(88) Organization, W. H. WHO global strategy for containment of antimicrobial resistance; World Health Organization, 2001.
(89) Zhang, M.; He, L. Y.; Liu, Y. S.; Zhao, J. L.; Liu, W. R.; Zhang, J. N.; Chen, J.; He, L. K.; Zhang, Q. Q.; Ying, G. G. Fate of veterinary antibiotics during animal manure composting. Sci Total Environ 2019, 650 (Pt 1), 1363-1370. DOI: 10.1016/j.scitotenv.2018.09.147.
(90) Riaz, L.; Wang, Q.; Yang, Q.; Li, X.; Yuan, W. Potential of industrial composting and anaerobic digestion for the removal of antibiotics, antibiotic resistance genes and heavy metals from chicken manure. Sci Total Environ 2020, 718, 137414. DOI: 10.1016/j.scitotenv.2020.137414.
(91) Diehl, D. L.; LaPara, T. M. Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids. Environ. Sci. Technol. 2010, 44 (23), 9128.
(92) Xu, M.; Stedtfeld, R. D.; Wang, F.; Hashsham, S. A.; Song, Y.; Chuang, Y.; Fan, J.; Li, H.; Jiang, X.; Tiedje, J. M. Composting increased persistence of manure-borne antibiotic resistance genes in soils with different fertilization history. Sci Total Environ 2019, 689, 1172-1180. DOI: 10.1016/j.scitotenv.2019.06.376.
(93) Lin, H.; Chapman, S. J.; Freitag, T. E.; Kyle, C.; Ma, J.; Yang, Y.; Zhang, Z. Fate of tetracycline and sulfonamide resistance genes in a grassland soil amended with different organic fertilizers. Ecotoxicol Environ Saf 2019, 170, 39-46. DOI: 10.1016/j.ecoenv.2018.11.059.
(94) 林居慶; 陳?如. 商業有機肥料與沼渣沼液作為環境抗生素抗藥性發展的潛在來源探究; Commercially available organic fertilizers and anaerobic digestion residues as the potential source of antibiotic resistance development in the environment. 2020.
(95) Cao, Y.; Zhao, J.; Wang, Q.; Bai, S.; Yang, Q.; Wei, Y.; Wang, R. Industrial aerobic composting and the addition of microbial agents largely reduce the risks of heavy metal and ARG transfer through livestock manure. Ecotoxicology and Environmental Safety 2022, 239, 113694. DOI: https://doi.org/10.1016/j.ecoenv.2022.113694.
(96) Deng, W.; Zhang, A.; Chen, S.; He, X.; Jin, L.; Yu, X.; Yang, S.; Li, B.; Fan, L.; Ji, L.; et al. Heavy metals, antibiotics and nutrients affect the bacterial community and resistance genes in chicken manure composting and fertilized soil. Journal of Environmental Management 2020, 257, 109980. DOI: https://doi.org/10.1016/j.jenvman.2019.109980.
(97) Zhang, M.; He, L.-Y.; Liu, Y.-S.; Zhao, J.-L.; Zhang, J.-N.; Chen, J.; Zhang, Q.-Q.; Ying, G.-G. Variation of antibiotic resistome during commercial livestock manure composting. Environment International 2020, 136, 105458. DOI: https://doi.org/10.1016/j.envint.2020.105458.
(98) Seiler, C.; Berendonk, T. U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 2012, 3, 399. DOI: 10.3389/fmicb.2012.00399.
指導教授 林居慶(Chu-Ching Lin) 審核日期 2022-9-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明