博碩士論文 107326021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.145.168.147
姓名 陳堂威(Tang-Wei Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 燃煤及煉鋼程序之PM與PAHs排放特性研究
(Characteristics of PM and PAHs Emitted from Coal-fired and Steel-making Processes)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-1以後開放)
摘要(中) 燃煤程序及鋼鐵業為國家不可或缺之基礎工業,其排放之PM、SOx、NOx及PAHs對大氣污染貢獻比重大。本研究針對兩座不同年份但具相同APCDs (SCR+ESP+WFGD+WESP)之燃煤鍋爐(A及B鍋爐)及鋼鐵業(燒結程序與電弧爐)進行排氣之PM、PM2.5 (FPM、CPM)、PAHs、SOx及NOx採樣分析,結果顯示燃煤A及B鍋爐之NOx排放濃度分別為59及15 ppm,以A鍋爐(η=47.2%)去除效率較B鍋爐(η=84.3%)低,且A鍋爐濃度高於BACT之規範(30 ppm),燒結程序之NOx排放濃度為43 ppm (η=57.8%),低於SCR預期之80%效能;燃煤鍋爐WFGD針對SOx之去除效率達99%,燒結程序之SOx排放濃度較高(17 ppm),電弧爐袋式入口處測得之NOx及SOx濃度皆< 1 ppm。FPM採樣結果顯示燃煤A及B鍋爐之煙囪排氣分別為0.9及0.4 mg/Nm3,由SCR出口至煙囪其去除效率皆達99.9%,燒結程序及電弧爐煙囪排氣之FPM濃度則分別為8.2及 13.6 mg/Nm3,以電弧爐略高於BACT規範值(10 mg/Nm3);此外,燃煤A及B鍋爐煙囪排氣之FPM2.5皆<0.09 mg/Nm3,燒結程序及電弧爐煙囪排氣之FPM2.5濃度則分別為1.8及3.2 mg/Nm3,整體顯示鋼鐵業之粒狀物皆略高於燃煤鍋爐;CPM排放濃度顯示燃煤A及B鍋爐分別為37.4及14.7 mg/Nm3,燒結程序及電弧爐煉鋼之CPM排放濃度則分別為 37.7及 3.4 mg /Nm3,顯示燃煤鍋爐及鋼鐵業之CPM排放濃度皆遠大於FPM,值得重視。PAHs方面,燃煤A鍋爐煙囪排氣之PAHs濃度為547 ng/Nm3,燒結程序及電弧爐煉鋼則分別為62.6及136 μg/Nm3,皆以氣相濃度遠高於固相,以2-3環數為主要物種,且部分PAHs物種有上升的趨勢,既有之APCDs難以有效去除,PAHs毒性排放濃度則以鋼鐵業(4.74-5.45 μg-BaPeq/Nm3)遠高於燃煤鍋爐(39.7 ng-BaPeq/Nm3)。另一方面,燃煤鍋爐及鋼鐵業之污染物排放係數計算,結果顯示燃煤鍋爐及燒結程序之FPM排放係數明顯低於先前文獻,僅電弧爐FPM則有較高之排放係數,且燃煤鍋爐及鋼鐵業之CPM排放係數皆遠高於FPM;此外,鋼鐵業PAHs排放係數遠大於燃煤鍋爐,值得重視。PCA結果表明燃煤鍋爐及鋼鐵業PAHs特徵物種多以4-6環PAHs為主要分布。
摘要(英) Coal-fired boilers and steel industry are crucial for economic development, however, emissions of NOx, SOx, PM and PAHs from these industries pose significant impact on local air quality. In this study, two coal-fired boilers (Boilers A and B) and steel-making processes including sintering process (SP) and electric arc furnace (EAF) are selected for sampling and analysis to evaluate the performance of APCDs adopted and the emission characteristics of PM, PM2.5 (FPM and CPM), SOx, NOx, and PAHs. The results show that the concentrations of NOx emitted from Boiler A and B are 59 and 15 ppm, respectively, and the removal efficiency of NOx achieved with Boiler A (η= 47.2%) is lower than that of boiler B (η=84.3%), and the NOx emitted from Boiler A is slightly higher than the BACT standard (30 ppm). The NOx concentration emitted from the SP is 43 ppm and the NOx removal efficiency is 57.8%, which is lower than the expected performance of SCR (η= 80%). Removal efficiencies of SOx achieved with WFGD of two coal-fired boilers are 99%. The SOx concentration emitted from the SP is 17 ppm, while the concentrations of NOx and SOx measured at EAF outlet are lower than 1 ppm. The FPM concentrations measured at stacks of Boiler A and B are 0.9 and 0.4 mg/Nm3, respectively, and the removal efficiencies of FPM are 99.9%. On the other hand, the FPM concentrations measured at the stacks of SP and EAF are 8.2 mg/Nm3 and 13.6 mg/Nm3, respectively. The FPM emitted from EAF is slightly higher than the BACT standard (10 mg/Nm3). The FPM2.5 emitted from both coal-fired boilers are < 0.09 mg/Nm3. FPM2.5 emitted from the SP is measured as 1.8 mg/Nm3, which is lower than that emitted from EAF (3.2 mg/Nm3). It shows that the FPM concentration emitted from the steel-making processes are higher than that of coal-fired boilers. The CPM emitted from coal-fired boilers A and B are 37.4 and 14.7 mg/Nm3, respectively, and those from SP and EAF are 37.7 and 3.4 mg/Nm3, respectively, indicating that CPM emitted from coal-fired boilers and steel-making processes are higher than FPM and deserve more attention. The PAHs concentration measured at the stack of coal-fired boiler A is 547 ng/Nm3, while those measured at SP and EAF are 62.6 and 136 μg/Nm3, respectively. The concentrations of gas-phase PAHs are higher than that of solid-phase PAHs, and are primarily composed of 2-3 ring, and existing APCDs cannot efficiently remove gas-phase PAHs. The toxic concentrations of PAHs emitted from steel-making processes (4.74-5.45 μg-BaPeq/Nm3) are significantly higher than those emitted from coal-fired boilers (39.7 ng-BaPeq/Nm3). In addition, this study shows that the PAHs of the coal-fired boiler is easily enriched in fine particles. On the other hand, the emission factors of FPM from coal-fired boiler and SP are significantly lower than other reports. However, the emission factors of particulate matter from EAF are relatively high. The emission factors of CPM from coal-fired boiler and steel-making processes are much higher than those of FPM. Moreover, the emission factors of PAHs in SP and EAF are significantly higher than those of coal-fired boilers, indicating there is room for improvement. PCA analysis results show that PAHs characteristic species of coal-fired boiler and steel-making process are 4-6 ring PAHs.
關鍵字(中) ★ 最佳可行控制技術
★ 多環芳香烴化合物
★ 氮氧化物
★ 硫氧化物
★ 細懸浮微粒
關鍵字(英) ★ Best available control technologies (BACT)
★ NOx
★ SOx
★ Fine particulate matter,
★ polycyclic aromatic hydrocarbons (PAHs)
論文目次 摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 IX
第一章 研究緣起 1
1.1 前言 1
1.2 研究目的 4
第二章 文獻回顧 5
2.1 燃煤及煉鋼粒狀物濃度與分布特性 5
2.2 燃煤及煉鋼PAHs濃度及特性 12
2.3 燃煤及煉鋼之排放係數 22
2.4 粒狀物及PAHs控制技術 24
2.4.1 粒狀污染物控制 24
2.4.2 PAHs 24
2.5 國內外空氣污染防制相關法規 29
2.5.1 粒狀物及多環芳香烴 29
2.5.2 國內外BACT標準規範 34
第三章 研究方法 39
3.1 研究流程與架構 39
3.2 煙道排氣採樣對象 39
3.2.1 燃煤鍋爐 39
3.2.2 鋼鐵業 42
3.3 煙道氣採樣方法 44
3.3.1 粒狀物採樣方法 44
3.3.2 多環芳香烴採樣方法 45
3.4 實驗設備、材料、藥品及溶劑 46
3.4.1 實驗設備 46
3.4.2 實驗材料 47
3.4.3 實驗藥品及溶劑 47
3.5 粒狀物前處理與分析方法 48
3.5.1 可過濾性微粒(FPM2.5) 49
3.5.2 可凝結性微粒(CPM) 49
3.6 多環芳香烴前處理與分析方法 50
3.6.1 多環芳香烴前處理與分析 50
3.6.2 多環芳香烴毒性當量 51
3.7 其他檢測方法 52
3.7.1 煙道氣之氣體組成分析 52
3.7.2 煙道氣之氯化氫分析 53
3.8 GC/MS分析 53
3.9 污染物之排放係數計算 54
第四章 結果與討論 55
4.1 燃煤鍋爐 55
4.1.1 燃煤鍋爐氣態污染物特性及操作參數 55
4.1.2 燃煤鍋爐煙道排氣之FPM、FPM2.5及CPM質量濃度 57
4.1.3 燃煤鍋爐FPM2.5和CPM於PM2.5之佔比 64
4.1.4 燃煤鍋爐煙道排氣之PAHs濃度 65
4.1.5 燃煤鍋爐煙道排氣之PAHs氣固及環數比分布 69
4.1.6 燃煤鍋爐煙道排氣之PAHs毒性當量濃度 71
4.1.7 燃煤鍋爐煙道排氣之污染物排放係數 72
4.2 鋼鐵業 74
4.2.1 鋼鐵業氣態污染物特性及操作參數 74
4.2.2 鋼鐵業煙道排氣之FPM、FPM2.5及CPM質量濃度 77
4.2.3 鋼鐵業FPM2.5和CPM於PM2.5之佔比 82
4.2.4 鋼鐵業煙道排氣之PAHs濃度 84
4.2.5 鋼鐵業煙道排氣之PAHs氣固及環數比分布 89
4.2.6 鋼鐵業煙道排氣之PAHs毒性當量濃度 92
4.2.7 鋼鐵業煙道排氣之污染物排放係數 96
4.3 主成分分析(PCA) 99
第五章 結論與建議 101
5.1 結論 101
5.2 建議 103
參考文獻 105
附錄一 PAHs物種之方法偵測極限 120
附錄二 燃煤鍋爐之氣固相PAHs回收率 121
附錄三 燒結程序之氣固相PAHs回收率 122
附錄四 電弧爐煉鋼之氣固相PAHs回收率 123
參考文獻 Abdel-Shafy, H. I.; Mansour, M. S. M., A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum 2016, 25, (1), 107-123.
Achten, C.; Andersson, J. T., Overview of polycyclic aromatic compounds (PAC). Polycyclic Aromatic Compounds 2015, 35, (2-4), 177-186.
Allen, J. O.; Dookeran, N. M.; Smith, K. A.; Sarofim, A. F.; Taghizadeh, K.; Lafleur, A. L., Measurement of polycyclic aromatic hydrocarbons associated with size-segregated atmospheric aerosols in Massachusetts. Environmental Science & Technology 1996, 30, (3), 1023-1031.
Bai, Y.; Li, Z. H.; Xue, J. M., Study and application of coal-fired flue gas denitrification with urea serving as reducing agent. Electric Power Technology and Environmental Protection 2011, 1.
Besombes, J. L.; Maı̂tre, A.; Patissier, O.; Marchand, N.; Chevron, N.; Stoklov, M.; Masclet, P., Particulate PAHs observed in the surrounding of a municipal incinerator. Atmospheric Environment 2001, 35, (35), 6093-6104.
Bjorseth, A.; Ramdahl, T., Handbook of polycyclic aromatic hydrocarbons, Volume 2, Emission sources and recent progress in analytical chemistry. CRC Press 1985.
Blumenstock, M.; Zimmermann, R.; Schramm, K. W.; Kettrup, A., Influence of combustion conditions on the PCDD/F-, PCB-, PCBz-and PAH-concentrations in the post-combustion chamber of a waste incineration pilot plant. Chemosphere 2000, 40, (9-11), 987-993.
Bo, X.; Li, Z.; Qu, J.; Cai, B.; Zhou, B.; Sun, L.; Cui, W.; Zhao, X.; Tian, J.; Kan, H., The spatial-temporal pattern of sintered flue gas emissions in iron and steel enterprises of China. Journal of Cleaner Production 2020, 266, 121667.
Busca, G.; Lietti, L.; Ramis, G.; Berti, F., Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Applied Catalysis B: Environmental 1998, 18, (1-2), 1-36.
Cai, H.; Wang, M.; Elgowainy, A.; Han, J., Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units. U.S. Department of Energy Office of Scientific and Technical Information 2012.
Chen, J. S.; Yuan, D. X.; Hong, Y. W.; Juan, G., Effect of catalytic de-NOx device on the emission characteristics of polycyclic aromatic hydrocarbon in flue gas. Journal of Fuel Chemistry and Technology 2007, 35, (6), 722-726.
Chen, S. C.; Liao, C. M., Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Science of the Total Environment 2006, 366, (1), 112-123.
Chen, X.; Liu, Q.; Yuan, C.; Sheng, T.; Zhang, X.; Han, D.; Xu, Z.; Huang, X.; Liao, H.; Jiang, Y.; Dong, W.; Fu, Q.; Cheng, J., Emission characteristics of fine particulate matter from ultra-low emission power plants. Environmental Pollution 2019, 255, 113157.
China MEE (Ministry of ecology and environment of People′s Republic of China), Technical specifications for discharge permit application and issuance-steel industry. National Environmental Protection Standard HJ846 of People′s Republic of China, 2017.
Chow, J. C.; Fairley, D.; Watson, J. G.; DeMandel, R.; Fujita, E. M.; Lowenthal, D. H.; Lu, Z.; Frazier, C. A.; Long, G.; Cordova, J., Source apportionment of wintertime PM10 at San Jose, Calif. Journal of Environmental Engineering 1995, 121, (5), 378-387.
Cieplik, M. K.; Carbonell, J. P.; Muñoz, C.; Baker, S.; Krüger, S.; Liljelind, P.; Marklund, S.; Louw, R., On dioxin formation in iron ore sintering. Environmental Science & Eechnology 2003, 37, (15), 3323-3331.
Corio, L. A.; Sherwell, J., In-stack condensible particulate matter measurements and issues. Journal of the Air & Waste Management Association 2000, 50, (2), 207-218.
Crolla, D., Encyclopedia of automotive engineering. John Wiley & Sons: 2015.
Davies, I. W.; Harrison, R. M.; Perry, R.; Ratnayaka, D.; Wellings, R. A., Municipal incinerator as source of polynuclear aromatic hydrocarbons in environment. Environmental Science & Technology 1976, 10, (5), 451-453.
Ding, X.; Li, Q.; Wu, D.; Liang, Y.; Xu, X.; Xie, G.; Wei, Y.; Sun, H.; Zhu, C.; Fu, H., Unexpectedly increased particle emissions from the steel industry determined by wet/semidry/dry flue gas desulfurization technologies. International Agency for Research on Cancer 2019, 53, (17), 10361-10370.
Ehrlich, C.; Noll, G.; Kalkoff, W. D.; Baumbach, G.; Dreiseidler, A., PM10, PM2.5 and PM10-emissions from industrial plants-results from measurement programmes in Germany. Atmospheric Environment 2007, 41, (29), 6236-6254.
EU (European Union), Best Available Techniques (BAT) Reference Document for Iron and Steel Production, Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control), 2010.
Farber, P. S.; Sloat, D. G. In Reducing acid mist emissions from coal-fired power plants, COAL-GEN Power Generation Conference, 2005.
Feng, Y.; Li, Y.; Cui, L., Critical review of condensable particulate matter. Fuel 2018, 224, 801-813.
Forzatti, P., Present status and perspectives in de-NOx SCR catalysis. Applied Catalysis A: General 2001, 222, (1-2), 221-236.
Gibson, E. S.; Martin, R.; Lockington, J., Lung cancer mortality in a steel foundry. Journal of Occupational and Environmental Medicine 1977, 19, (12), 807-812.
Goodarzi, F., The rates of emissions of fine particles from some Canadian coal-fired power plants. Fuel 2006, 85, (4), 425-433.
Grmasha, R. A.; Al-sareji, O. J.; Salman, J. M.; Hashim, K. S., Polycyclic aromatic hydrocarbons (PAHs) in urban street dust within three land-uses of Babylon governorate, Iraq: Distribution, sources, and health risk assessment. Journal of King Saud University - Engineering Sciences 2020.
Guo, Y.; Gao, X.; Zhu, T.; Luo, L.; Zheng, Y., Chemical profiles of PM emitted from the iron and steel industry in northern China. Atmospheric Environment 2017, 150, 187-197.
Heck, R. M.; Farrauto, R. J.; Gulati, S. T., Catalytic air pollution control: Commercial technology. John Wiley & Sons, 2016.
Hinds, W. C., Aerosol technology: properties, behavior, and measurement of airborne particles. John Wiley & Sons, 1999.
Hsu, W. T.; Liu, M. C.; Hung, P. C.; Chang, S. H.; Chang, M. B., PAH emissions from coal combustion and waste incineration. Journal of Hazardous Materials 2016, 318, 32-40.
Huang, Y. M.; Huang, S. H.; Lin, C. W.; Yang, H. H.; Chen, C. C., Evaluation of bias in the measurement of condensable particulate matter with method 202. Aerosol and Air Quality Research 2021, 21, (1), 1-12.
Huynh, C.; Duc, T. V.; Schwab, C.; Rollier, H., In-stack dilution technique for the sampling of polycyclic organic compounds. Application to effluents of a domestic waste incineration plant. Atmospheric Environment (1967) 1984, 18, (2), 255-259.
IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. v. 42: Silica and some silicates. International Agency for Research on Cancer 1987.
Jia, C.; Batterman, S., A critical review of naphthalene sources and exposures relevant to indoor and outdoor air. International Journal of Environmental Research and Public Health 2010, 7, (7), 2903-2939.
Keller, C. D.; Bidleman, T. F., Collection of airborne polycyclic aromatic hydrocarbons and other organics with a glass fiber filter-polyurethane foam system. Atmospheric Environment 1984, 18, (4), 837-845.
Khakharia, P.; Huizinga, A.; Trap, H.; Monteiro, J.; Goetheer, E., Lab scale investigation on the formation of aerosol nuclei by a wet electrostatic precipitator in the presence of SO2 in a gas stream. International Journal of Greenhouse Gas Control 2019, 86, 22-33.
Khalfi, A.; Trouvé, G.; Delobel, R.; Delfosse, L., Correlation of CO and PAH emissions during laboratory-scale incineration of wood waste furnitures. Journal of Analytical and Applied Pyrolysis 2000, 56, (2), 243-262.
Khaparde, V.; Bhanarkar, A.; Majumdar, D.; Rao, C. C., Characterization of polycyclic aromatic hydrocarbons in fugitive PM10 emissions from an integrated iron and steel plant. Science of the Total Environment 2016, 562, 155-163.
Lai, S. Characteristics of PAHs and metal elements in the stack flue gas of the steel and iron industries. National Cheng Kung University, 1998.
Li, J.; Li, X.; Li, M.; Lu, S.; Yan, J.; Xie, W.; Liu, C.; Qi, Z., Influence of air pollution control devices on the polycyclic aromatic hydrocarbon distribution in flue gas from an ultralow-emission coal-fired power plant. Energy & Fuels 2016, 30, (11), 9572-9579.
Li, J.; Qi, Z.; Li, M.; Wu, D.; Zhou, C.; Lu, S.; Yan, J.; Li, X., Physical and chemical characteristics of condensable particulate matter from an ultralow-emission coal-fired power plant. Energy & Fuels 2017, 31, (2), 1778-1785.
Li, Z.; Jiang, J.; Ma, Z.; Wang, S.; Duan, L., Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China. Atmospheric Environment 2015, 120, 227-233.
Liberti, L.; Notarnicola, M.; Primerano, R.; Zannetti, P., Air pollution from a large steel factory: polycyclic aromatic hydrocarbon emissions from coke-oven batteries. Journal of the Air & Waste Management Association 2006, 56, (3), 255-260.
Lloyd, J. W., Long-term mortality study of steelworkers: V. Respiratory cancer in coke plant workers. Journal of Occupational and Environmental Medicine 1971, 13, (2), 53-68.
Lo, C.; Chang. H. C.; Lu. Y. T.; Chen, Y. L, The determination and review of air emission standards in steel industry. Sinotech Engineering 2017, 136. 25-33.
Lu, C. M.; Dat, N. D.; Lien, C. K.; Chi, K. H.; Chang, M. B., Characteristics of fine particulate matter and polycyclic aromatic hydrocarbons emitted from coal combustion processes. Energy & Fuels 2019, 33, (10), 10247-10254.
Lu, P.; Wu, J.; Pan, W. P. In Particulate matter emissions from a coal-fired power plant, 2010 4th International Conference on Bioinformatics and Biomedical Engineering, 2010,18-20.
Maguhn, J.; Karg, E.; Kettrup, A.; Zimmermann, R., On-line analysis of the size distribution of fine and ultrafine aerosol particles in flue and stack gas of a municipal waste incineration plant: effects of dynamic process control measures and emission reduction devices. Environmental Science & Technology 2003, 37, (20), 4761-4770.
Mastral, A. M.; Callen, M. S., A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environmental Science & Technology 2000, 34, (15), 3051-3057.
Mertens, J.; Khakharia, P.; Rogiers, P.; Blondeau, J.; Lepaumier, H.; Goetheer, E.; Schallert, B.; Schaber, K.; Moretti, I., Prevention of mist formation in amine based carbon capture: Field testing using a wet electrostatic precipitator (WESP) and a gas-gas heater (GGH). Energy Procedia 2017, 114, 987-999.
Morisaki, H.; Nakamura, S.; Tang, N.; Toriba, A.; Hayakawa, K., Benzo [c] fluorene in urban air: HPLC determination and mutagenic contribution relative to Benzo [a] pyrene. Analytical Sciences 2016, 32, (2), 233-236.
Mu, L.; Peng, L.; Liu, X.; Song, C.; Bai, H.; Zhang, J.; Hu, D.; He, Q.; Li, F., Characteristics of polycyclic aromatic hydrocarbons and their gas/particle partitioning from fugitive emissions in coke plants. Atmospheric Environment 2014, 83, 202-210.
Nisbet, I. C.; Lagoy, P. K., Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology 1992, 16, (3), 290-300.
Odabasi, M.; Bayram, A.; Elbir, T.; Seyfioglu, R.; Dumanoglu, Y.; Bozlaker, A.; Demircioglu, H.; Altiok, H.; Yatkin, S.; Cetin, B., Electric arc furnaces for steel-making: hot spots for persistent organic pollutants. Environmental Science & Technology 2009, 43, (14), 5205-5211.
Oh, J. E.; Gullett, B.; Ryan, S.; Touati, A., Mechanistic relationships among PCDDs/Fs, PCNs, PAHs, ClPhs, and ClBzs in municipal waste incineration. Environmental Science & Technology 2007, 41, (13), 4705-4710.
Pan, D.; Yang, L.; Wu, H.; Huang, R., Removal characteristics of sulfuric acid aerosols from coal-fired power plants. Journal of the Air & Waste Management Association 2017, 67, (3), 352-357.
Paulik, L. B.; Donald, C. E.; Smith, B. W.; Tidwell, L. G.; Hobbie, K. A.; Kincl, L.; Haynes, E. N.; Anderson, K. A., Emissions of polycyclic aromatic hydrocarbons from natural gas extraction into air. Environmental Science & Technology 2016, 50, (14), 7921-7929.
Pei, B., Determination and emission of condensable particulate matter from coal-fired power plants. Journal of Environmental Science 2015, 36, (5), 1544-1549.
Pope III, C. A.; Dockery, D. W., Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association 2006, 56, (6), 709-742.
Ravindra, K.; Sokhi, R.; Van Grieken, R., Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment 2008, 42, (13), 2895-2921.
Redmond, C. K., Cancer mortality among coke oven workers. Environmental Health Perspectives 1983, 52, 67-73.
Ren, Y.; Wu, Q.; Wen, M.; Li, G.; Xu, L.; Ding, X.; Li, Z.; Tang, Y.; Wang, Y.; Li, Q., Sulfur trioxide emissions from coal-fired power plants in China and implications on future control. Fuel 2020, 261, 116438.
Ruan, R.; Liu, H.; Tan, H.; Yang, F.; Li, Y.; Duan, Y.; Zhang, S.; Lu, X., Effects of APCDs on PM emission: A case study of a 660 MW coal-fired unit with ultralow pollutants emission. Applied Thermal Engineering 2019, 155, 418-427.
Ruan, R.; Xu, X.; Tan, H.; Zhang, S.; Lu, X.; Zhang, P.; Han, R.; Xiong, X., Emission characteristics of particulate matter from two ultralow-emission coal-fired industrial boilers in Xi’an, China. Energy & Fuels 2019, 33, (3), 1944-1954.
Samburova, V.; Zielinska, B.; Khlystov, A., Do 16 polycyclic aromatic hydrocarbons represent PAH air toxicity? Toxics 2017, 5, (3), 17.
Shen, G.; Wang, W.; Yang, Y.; Zhu, C.; Min, Y.; Xue, M.; Ding, J.; Li, W.; Wang, B.; Shen, H., Emission factors and particulate matter size distribution of polycyclic aromatic hydrocarbons from residential coal combustions in rural northern China. Atmospheric Environment 2010, 44, (39), 5237-5243.
Singh, R.; Shukla, A., A review on methods of flue gas cleaning from combustion of biomass. Renewable and Sustainable Energy Reviews 2014, 29, 854-864.
Sui, Z.; Zhang, Y.; Peng, Y.; Norris, P.; Cao, Y.; Pan, W. P., Fine particulate matter emission and size distribution characteristics in an ultra-low emission power plant. Fuel 2016, 185, 863-871.
Taiwan EPA (Taiwan Environmental Protection Administration), Fixed pollution source data disclosure management information platform. https://aodmis.epa.gov.tw/opendata/#/ab/1. Discharge Permit of Steel Plant, 2020.
Taiwan JSS (Taiwan Jianshun Steel), Air pollutant sampling and test reports of Jianshun Steel Corporation in Taiwan during 2014~2019,2019.
Taiwan THS (Taiwan Tung Ho Steel), Air pollutant sampling and test reports of Tung Ho Steel Corporation in Taiwan during 2014~2019,2019.
Tollefson, J., Graphic detail countries with highest CO2-emitting power sectors (Tonnes per Year). Nature 2007, 450, (7168), 327.
Tsai, J. H.; Lin, K. H.; Chen, C. Y.; Ding, J. Y.; Choa, C. G.; Chiang, H. L., Chemical constituents in particulate emissions from an integrated iron and steel facility. Journal of Hazardous Materials 2007, 147, (1-2), 111-119.
U.S. EPA (United States Environmental Protection Agency) Method 202-Condensable particulate matter. 2016, Retrieved from https://www.epa.gov/emc/method-202-condensableparticulate-matter.
U.S. EPA (United States Environmental Protection Agency), Emission Factor Documentation for AP-42, Section 12.5.1,2009.
U.S. EPA (United States Environmental Protection Agency). AP-42 (Fifth Edition): Compilation of air emissions factors, Volume I, Chapter 1: External Combustion Sources. https://www3.epa.gov/ ttn/chief/ap42/ch01/final/c01s01.pdf (accessed May 15, 2019).
Wang, G.; Deng, J.; Ma, Z.; Hao, J.; Jiang, J., Characteristics of filterable and condensable particulate matter emitted from two waste incineration power plants in China. Science of the Total Environment 2018, 639, 695-704.
Wang, G.; Deng, J.; Zhang, Y.; Li, Y.; Ma, Z.; Hao, J.; Jiang, J., Evaluating airborne condensable particulate matter measurement methods in typical stationary sources in China. Environmental Science & Technology 2020, 54, (3), 1363-1371.
Wang, K.; Tian, H.; Hua, S.; Zhu, C.; Gao, J.; Xue, Y.; Hao, J.; Wang, Y.; Zhou, J., A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics. Science of the Total Environment 2016, 559, 7-14.
Wang, R.; Liu, G.; Sun, R.; Yousaf, B.; Wang, J.; Liu, R.; Zhang, H., Emission characteristics for gaseous-and size-segregated particulate PAHs in coal combustion flue gas from circulating fluidized bed (CFB) boiler. Environmental Pollution 2018, 238, 581-589.
Wang, R.; Yousaf, B.; Sun, R.; Zhang, H.; Zhang, J.; Liu, G., Emission characterization and δ13C values of parent PAHs and nitro-PAHs in size-segregated particulate matters from coal-fired power plants. Journal of Hazardous Materials 2016, 318, 487-496.
Wang, X.; Cheng, H.; Xu, X.; Zhuang, G.; Zhao, C., A wintertime study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5–10 in Beijing: Assessment of energy structure conversion. Journal of Hazardous Materials 2008, 157, (1), 47-56.
World Steel Association, 2018, Retrieved from http://worldsteel.org/.
Wu, B.; Bai, X.; Liu, W.; Lin, S.; Liu, S.; Luo, L.; Guo, Z.; Zhao, S.; Lv, Y.; Zhu, C.; Hao, Y.; Liu, Y.; Hao, J.; Duan, L.; Tian, H., Non-negligible stack emissions of noncriteria air pollutants from coal-fired power plants in China: Condensable particulate matter and sulfur trioxide. Environmental Science & Technology 2020, 54, (11), 6540-6550.
Wu, B.; Tian, H.; Hao, Y.; Liu, S.; Liu, X.; Liu, W.; Bai, X.; Liang, W.; Lin, S.; Wu, Y., Effects of wet flue gas desulfurization and wet electrostatic precipitators on emission characteristics of particulate matter and its ionic compositions from four 300 MW level ultralow coal-fired power plants. Environmental Science & Technology 2018, 52, (23), 14015-14026.
Wu, X.; Liu, W.; Gao, H.; Alfaro, D.; Sun, S.; Lei, R.; Jia, T.; Zheng, M., Coordinated effects of air pollution control devices on PAH emissions in coal-fired power plants and industrial boilers. Science of the Total Environment 2021, 756, 144063.
Wu, X.; Zhao, L.; Zhang, Y.; Zheng, C.; Gao, X.; Cen, K., Primary air pollutant emissions and future prediction of iron and steel industry in China. Aerosol and Air Quality Research 2015, 15, (4), 1422-1432.
Xhrouet, C.; De Pauw, E., Formation of PCDD/Fs in the sintering process: influence of the raw materials. Environmental Science & Technology 2004, 38, (15), 4222-4226.
Xu, Y.; Liu, X.; Zhang, Y.; Sun, W.; Zhou, Z.; Xu, M.; Pan, S.; Gao, X., Field measurements on the emission and removal of PM2.5 from coal-fired power stations: 3. Direct comparison on the PM removal efficiency of electrostatic precipitators and fabric filters. Energy & Fuels 2016, 30, (7), 5930-5936.
Yang, H. H.; Arafath, S. M.; Lee, K. T.; Hsieh, Y. S.; Han, Y. T., Chemical characteristics of filterable and condensable PM2.5 emissions from industrial boilers with five different fuels. Fuel 2018, 232, 415-422.
Yang, H. H.; Arafath, S. M.; Wang, Y. F.; Wu, J. Y.; Lee, K. T.; Hsieh, Y. S., Comparison of coal-and oil-fired boilers through the investigation of filterable and condensable PM2.5 sample analysis. Energy & Fuels 2018, 32, (3), 2993-3002.
Yang, H. H.; Gupta, S. K.; Dhital, N. B.; Lee, K. T.; Hsieh, Y. S.; Huang, S. C., Establishment of indicatory metals for filterable and condensable PM2.5 emitted from important stationary emission sources. Energy & Fuels 2019, 33, (11), 10878-10887.
Yang, H. H.; Lai, S. O.; Hsieh, L. T.; Hsueh, H. J.; Chi, T. W., Profiles of PAH emission from steel and iron industries. Chemosphere 2002, 48, (10), 1061-1074.
Yang, H. H.; Lee, K. T.; Hsieh, Y. S.; Luo, S. W.; Huang, R. J., Emission characteristics and chemical compositions of both filterable and condensable fine particulate from steel plants. Aerosol and Air Quality Research 2015, 15, (4), 1672-1680.
Yang, H. H.; Lee, K. T.; Hsieh, Y. S.; Luo, S. W.; Li, M. S., Filterable and condensable fine particulate emissions from stationary sources. Aerosol and Air Quality Research 2014, 14, (7), 2010-2016.
Yang, Z.; Zheng, C.; Li, Q.; Zheng, H.; Zhao, H.; Gao, X., Fast evolution of sulfuric acid aerosol activated by external fields for enhanced emission control. Environmental Science & Technology 2020, 54, (5), 3022-3031.
Yasuda, K.; Takahashi, M., The emission of polycyclic aromatic hydrocarbons from municipal solid waste incinerators during the combustion cycle. Journal of the Air & Waste Management Association 1998, 48, (5), 441-447.
Yin, X. F.; Yang, W. T.; Xue, H. M. PAHs emission characteristics and assessment from the coal combustion process in the large capacity power plant boilers, Advanced Materials Research 2013, 726-731.
Yoo, J. I.; Kim, K. H.; Jang, H. N.; Seo, Y. C.; Seok, K. S.; Hong, J. H.; Jang, M., Emission characteristics of particulate matter and heavy metals from small incinerators and boilers. Atmospheric Environment 2002, 36, (32), 5057-5066.
Yu, Y.; Guo, H.; Liu, Y.; Huang, K.; Wang, Z.; Zhan, X., Mixed uncertainty analysis of polycyclic aromatic hydrocarbon inhalation and risk assessment in ambient air of Beijing. Journal of Environmental Sciences 2008, 20, (4), 505-512.
Zhan, M. X.; Xu, S.; Cai, P.; Chen, T.; Lin, X.; Buekens, A.; Li, X., Parameters affecting the formation mechanisms of dioxins in the steel manufacture process. Chemosphere 2019, 222, 250-257.
Zhang, L.; Yang, L.; Zhou, Q.; Zhang, X.; Xing, W.; Wei, Y.; Hu, M.; Zhao, L.; Toriba, A.; Hayakawa, K., Size distribution of particulate polycyclic aromatic hydrocarbons in fresh combustion smoke and ambient air: A review. Journal of Environmental Sciences 2020, 88, 370-384.
Zhao, L.; Sun, W.; Li, X.; Ye, Z.; Huang, J.; Zhang, G.; Cai, J., Assessment of particulate emissions from a sinter plant in steelmaking works in China. Environmental Monitoring and Assessment 2017, 189, (8), 1-16.
Zhao, Z.; Du, Q.; Zhao, G.; Gao, J.; Dong, H.; Cao, Y.; Han, Q.; Yuan, P.; Su, L., Fine particle emission from an industrial coal-fired circulating fluidized-bed boiler equipped with a fabric filter in China. Energy & Fuels 2014, 28, (7), 4769-4780.
Zheng, C.; Hong, Y.; Liu, S.; Yang, Z.; Chang, Q.; Zhang, Y.; Gao, X., Removal and emission characteristics of condensable particulate matter in an ultralow emission power plant. Energy & Fuels 2018, 32, (10), 10586-10594.
Zheng, C.; Zheng, H.; Shen, J.; Gao, W.; Yang, Z.; Zhao, Z.; Wang, Y.; Zhang, H.; Gao, X., Evolution of condensable fine particle size distribution in simulated flue gas by external regulation for growth enhancement. Environmental Science & Technology 2020, 54, (7), 3840-3848.
Zhu, J.; Hsu, C. Y.; Chou, W. C.; Chen, M. J.; Chen, J. L.; Yang, T. T.; Wu, Y. S.; Chen, Y. C., PM2.5 and PM10-bound polycyclic aromatic hydrocarbons (PAHs) in the residential area near coal-fired power and steelmaking plants of Taichung City, Taiwan: In vitro-based health risk and source identification. Science of the Total Environment 2019, 670, 439-447.
中國鋼鐵股份有限公司,http://www.csc.com.tw/csc/pd/pd.html,2018。
中興工程顧問公司,北部空品區粒狀物來源及管制策略評估計畫,新北市政府環境保護局,2012。
中鋼公司,2016年中鋼社會責任報告書,2018。
台灣電力公司,https://www.taipower.com.tw/tc/index.aspx。
行政院環保署,固定污染源最佳可行控制技術,2020。
行政院環保署環檢所,排放管道中可凝結性微粒檢測方法(NIEA A214.70C)。
行政院環保署環檢所,排放管道中多環芳香烴之檢測方法 (NIEA A730.70C)。
行政院環保署環檢所,排放管道中氣體組成檢測方法(NIEA A003.71)。
行政院環保署環檢所,排放管道中細懸浮微粒(PM2.5)檢測方法 (NIEA A212.10B)。
行政院環保署環檢所,排放管道中氯化氫檢測方法-硫氰化汞比色法(NIEA A412.73A)。
行政院環境保護署,空氣污染排放量資料庫(TEDS10.0)。
行政院環境保護署,電力設施空氣污染物排放標準,2014。
李慧梅,木柵焚化廠廢氣中多環芳香烴(PAHs)化合物防制技術委外研發計畫,台北市政府環境保護局木柵垃圾焚化廠,1991。
林文川,灣裡地區大氣粒狀物特性之研究,1992。
能源局,能源統計手冊,2019。
財團法人中技社,台灣煉鋼程序的挑戰與機會,2013。
郭承彬、蔡志賢、張章堂,本土固定污染源PM2.5檢測係數與美國PM Calculator資料庫比較,綠色技術與工程實務研討暨成果發表會,2016。
程萬里,台灣綠碁科技股份有限公司,台中市PM2.5來源分析及管制計畫,2013-2020。
黃盛修、陳志傑、楊錫賢,固定污染源排放管道細懸浮微粒(PM2.5)調查管制及法規修訂計畫,行政院環境保護署,2019。
劉澤懷,財團法人台灣綜合研究院,發電設備永續發展技術及制度之規劃與推動,2020。
鄭福田、張章堂,陶瓷業煙道中粒狀物排放特性之研究,經濟部工業局委託計畫,1998。
鍾周德,康城工程顧問股份有限公司,103年度固定污染源PM2.5成分分析與調查計畫,新竹縣政府環境保護局,2014。
羅鈞、鄭玟芩、陳怡伶,中興工程顧問公司,我國固定污染源細懸浮微粒(PM2.5)排放特性之研究分析,2018。
指導教授 張木彬(Moo-Been Chang) 審核日期 2021-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明