博碩士論文 107327004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.236.228.250
姓名 鍾宇冠(Yu-Kuan Chung)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 寬頻微型振動發電機之研製
相關論文
★ 雙頻帶微型電磁式發電機之研製★ 經驗模態分解法之清醒與麻醉情形下的腦波特徵判別
★ CMOS-MEMS電容式加速度計之設計與製作★ 銅電鍍製程於微小結構製作之應用
★ 平面雙軸式磁通閘之分析與應用★ 低頻振動能量擷取器之設計
★ 聲波聚焦噴墨搭配菲涅爾透鏡之設計★ 微粒子於溶液中操控之模擬
★ 應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理★ 平面雙軸式磁通閘之製作與改良
★ 單一自由度微型電熱鑷子之設計與分析★ 加工液濁度檢測器之設計
★ Underwater Position Control of Particles★ 立體微型振動發電機之研製
★ 三維導電微成型技術開發應用於微機電系統之研究★ 用於電火花加工的油質感測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文提出一寬頻的微型振動發電機,回顧調整頻寬以及增加頻寬的方法讓發電機的工作頻寬增加,使得能應用的振動環境更加廣泛。接著介紹基礎理論,以及利用導電銀膠製作線圈結構的方法與流程。後面進行簡單的模態分析,討論線圈的支撐柱高低對共振頻率的影響。
實驗量測三種不同修剪長度的元件,分析其共振頻率、開路電壓及輸出功率,並討論在不同輸入振幅造成的影響。最後三種不同修剪長度中達到最大頻寬的元件,其各層頻寬分別為3.63 Hz以及3.59 Hz,串聯後頻寬達到11.29 Hz。功率方面在各層的共振頻率以及最大功率傳輸的狀況下,各層線圈的最大的平均功率分別有41.01 nW及49.54 nW。
摘要(英) This paper proposes a wide-bandwidth micro vibration generator. Conductive silver paste is used to make the coil structures on the substrate. Electromagnetic induction coverts the vibration energy into electrical energy. Simulation is conducted to study the effect of the height of the coil′s connection pillar on the resonance frequency. Three generators with different coil lengths are characterized. Resonance frequency, open-circuit voltage, and output power are measured. For the generator with maximum bandwidth, the maximum output powers and bandwidths are 41.01 nW and 3.63 Hz for coil 1 and 49.54 nW and 3.59 Hz for coil 2. The bandwidth for two coils connecting in series is 11.29 Hz.
關鍵字(中) ★ 電磁感應
★ 振動式發電機
★ 寬頻
★ 導電銀膠
關鍵字(英) ★ electromagnetic induction
★ vibration generator
★ wide bandwidth
★ conductive silver paste
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
一、 緒論 1
1-1 前言 1
1-2 研究動機與目的 1
1-3 振動式發電機介紹 2
1-3-1 電磁式 2
1-3-2 靜電式 3
1-3-3 壓電式 3
1-4 文獻回顧 4
1-4-1 調整頻寬 4
1-4-2 增加頻寬 8
1-5 論文架構 10
二、 基礎理論 11
2-1 機械系統 11
2-2 有效質量 13
2-3 半能頻寬法 15
2-4 功率計算 16
2-5 法拉第電磁感應 16
三、 設計與製程 17
3-1 材料介紹 17
3-1-1 基板選擇 17
3-1-2 導電膠選擇 17
3-2 元件製程步驟 18
3-3 元件接線步驟 25
3-4 元件夾具設計 29
四、 模態分析 31
4-1 分析設定 31
4-2 模擬結果 33
五、 量測與討論 41
5-1 量測架構 41
5-2 元件一之發電量 44
5-3 線圈長度對共振頻變化 49
5-3-1 元件二之發電量 49
5-3-2 元件三之發電量 54
5-3-3 上層線圈長度比較結果 60
5-4 增加輸入震幅的發電量變化 62
5-5 磁場均勻度對發電量變化 64
六、 結論與未來展望 66
6-1 結論 66
6-2 未來展望 67
參考文獻 68
參考文獻 [1] S. P. Beeby, M. J. Tudor, and N. White, "Energy harvesting vibration sources for microsystems applications," Measurement science and technology, vol. 17, no. 12, pp. R175-R195, 2006.
[2] M. Mizuno and D. G. Chetwynd, "Investigation of a resonance microgenerator," Journal of Micromechanics and Microengineering, vol. 13, no. 2, pp. 209-216, 2003.
[3] C. P. Le, E. Halvorsen, O. Søråsen, and E. M. Yeatman, "Wideband excitation of an electrostatic vibration energy harvester with power-extracting end-stops," Smart materials and structures, vol. 22, no. 7, 075020, 2013.
[4] S. Roundy et al., "Improving power output for vibration-based energy scavengers," IEEE Pervasive computing, vol. 4, no. 1, pp. 28-36, 2005.
[5] W. Al-Ashtari, M. Hunstig, T. Hemsel, and W. Sextro, "Frequency tuning of piezoelectric energy harvesters by magnetic force," Smart Materials and Structures, vol. 21, no. 3, 035019, 2012.
[6] W. Sun, J. Jung, and J. Seok, "Frequency-tunable electromagnetic energy harvester using magneto-rheological elastomer," Journal of Intelligent Material Systems and Structures, vol. 27, no. 7, pp. 959-979, 2016.
[7] S. Jo, M. Kim, and Y. J. Kim, "Passive-self-tunable vibrational energy harvester," in 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, 2011: IEEE, pp. 691-694.
[8] H. Liu, T. Chen, L. Sun, and C. Lee, "An electromagnetic MEMS energy harvester array with multiple vibration modes," Micromachines, vol. 6, no. 8, pp. 984-992, 2015.
[9] X. Bai, Y. Wen, P. Li, and J. Yang, "Multi-resonant vibration energy harvester using a spiral cantilever beam," in 2012 IEEE International Ultrasonics Symposium, 2012: IEEE, pp. 1-4.
[10] I. Sari, T. Balkan, and H. Kulah, "An electromagnetic micro power generator for wideband environmental vibrations," Sensors and Actuators A: Physical, vol. 145, pp. 405-413, 2008.
[11] W. Thomson, Theory of vibration with applications. CrC Press, 2018.
[12] X. Wang, Vehicle noise and vibration refinement, Elsevier, 2010.
[13] 黃詮涵,立體微型振動發電機之研製,碩士論文,國立中央大學,2017。
[14] 宮田正三,Fabrication and Characterization of Electrostatic and Electromagnetic MEMS Vibration Energy Harvesters,碩士論文,國立中央大學,2019。
[15] J. T. Wang, F. Jin, and C. H. Zhang, "Estimation error of the half-power bandwidth method in identifying damping for multi-DOF systems," Soil Dynamics and Earthquake Engineering, vol. 39, pp. 138-142, 2012.
[16] I. Wang, "An analysis of higher order effects in the half power method for calculating damping," Journal of Applied Mechanics, vol. 78, no. 1, 014501, 2011.
[17] C. Williams and R. B. Yates, "Analysis of a micro-electric generator for microsystems," in Proceedings of the International Solid-State Sensors and Actuators Conference-TRANSDUCERS′95, 1995, vol. 1: IEEE, pp. 369-372.
[18] 馮耀鋆,三維導電微成型技術開發應用於微機電系統之研究,博士論文,國立中央大學,2018。
[19] Y. Ivanova, T. Partalin, and I. Georgiev, "Characterisation of elastic properties of laminated composites by ultrasound and vibration," Scientific Proc. of Scienticic Techn. Union of Mech. Eng, vol. 1, no. 187, pp. 418-425, 2016.
[20] S. M. Han, H. Benaroya, and T. Wei, "Dynamics of transversely vibrating beams using four engineering theories," Journal of Sound and vibration, vol. 225, no. 5, pp. 935-988, 1999.
指導教授 陳世叡 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明