博碩士論文 107327017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:44.200.77.92
姓名 游朝廷(Chao-Ting Yu)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 摻雜奈米銀粒子以提升可撓式基板導熱係數之研究
相關論文
★ 利用銦錫氧化物設計太陽能電池之電極對轉換效率之效益★ 側聚光型太陽能電池系統之聚光元件設計與製作
★ 結合繞射光柵與平凸透鏡之光束分頻元件於聚 光型太陽光電 / 太陽熱混合系統之應用★ 波前檢測應用於氣體折射率量測
★ 多重曲率之聚光元件應用於聚光型太陽能電池系統★ 太陽光模擬系統之設計與製作
★ 有機發光二極體熱特性模擬研究★ 有機發光二極體激子光電特性模擬研究
★ 太陽光與固態照明自動化混光技術研究★ 高分子光柵應用於太陽光分光元件
★ 利用色差分光之太陽能分光系統★ 有機發光二極體光熱電特性整合模擬之研究
★ 隨機奈米粒子模型應用於OLED 出光增益之研究★ 太陽選擇性塗層與熱平行堆疊運用於太陽熱電發電系統之實時模擬研究
★ 陰影疊紋式力-位移量測技術之研究★ 繞射分波元件於混合型太陽能系統之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 毫發光二極體(mini light-emitting diodes, mini-LEDs)及微發光二極體(micro light-emitting diodes, micro-LEDs)是現今最具發展潛力的顯示元件,然而不論是作為背光源或是顯示器本身,都存在越來越高的熱管理需求。本研究提出一改良式軟性基板,供可撓式mini-LED及micro-LED使用,以提升其散熱能力,進而延長元件之壽命。本研究實際製備該改良式軟性基板,並以熱傳導係數儀、導熱係數實驗,以及熱模擬模型佐證其導熱係數上升之趨勢;且以X射線螢光光譜儀檢測添加物之實際含量,以確認基板之導熱係數與添加物含量之關係;又以可見光光譜儀量測基板之可見光穿透頻譜,分析其作為發光元件基板的潛力與挑戰。
摘要(英) Mini light-emitting diodes (mini-LEDs) and micro light-emitting diodes (micro-LEDs) are the most promising display components nowadays. Whether it is the backlight unit or the display itself, there is an increasing demand for thermal management. In this study, an improved flexible substrate is proposed as a substrate of the flexible mini-LED or the micro-LED to improve the heat dissipation capability and prolong the life of the device. The improved flexible substrate has been fabricated. The thermal conductivity analyzer, thermal conductivity experiment, and thermal simulation model were used to verify the thermal conductivity. Additionally, X-ray fluorescence spectrometer was used to verify the actual content of the filler and then to confirm the relationship between thermal conductivity of the substrate and its filler content. The visible spectrophotometer was used to measure the transmittance spectrum of the substrate for analyzing its potential and characteristics.
關鍵字(中) ★ 毫發光二極體
★ 微發光二極體
★ 軟性基板
★ 熱傳導係數
★ 散熱
★ 奈米銀
關鍵字(英) ★ mini-LED
★ micro-LED
★ flexible substrate
★ thermal conductivity
★ heat dissipation
★ nanosilver
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 vi
圖目錄 viii
表目錄 x
第一章、緒論 1
1-1 研究背景 1
1-2 可撓式基板提升導熱係數之發展 3
1-3 研究目的 5
1-4 研究之貢獻 5
1-5 論文架構 6
第二章、基礎理論與原理 7
2-1 發光二極體之發熱原理 7
2-2 熱量傳遞原理 10
2-3 固體熱傳導原理 14
第三章、基板製備與量測方法 16
3-1 改良式PI基板之材料與製備流程 16
3-2 基板銀元素占比量測 21
3-3 導熱係數量測 23
3-3-1 熱傳導係數儀(Thermal Conductivity Analyzer) 23
3-3-2 PI基板表面溫度量測實驗 27
第四章、模擬架構與方法 30
4-1 水泥電阻熱模擬模型 31
4-2 水泥電阻加熱PI基板之熱模擬模型 39
4-3 小結 41
第五章、結果與討論 42
5-1 銀元素含量量測結果 42
5-2 水泥電阻溫度熱特性之模擬與實驗 43
5-3 導熱係數量測結果 49
5-4 小結 50
第六章、結論與未來展望 51
6-1 結論 51
6-2 未來展望 51
參考文獻 53
附錄 56
可見光穿透率量測 56
可見光穿透率量測結果 59
參考文獻 [1] B. Johnstone, Brilliant!: Shuji Nakamura and the Revolution in Lighting Technology. Prometheus Books 2007, pp. 103–104.
[2] T. Pulli, T. Dönsberg, T. Poikonen, F. Manoocheri, P. Kärhä, and E. Ikonen, "Advantages of white LED lamps and new detector technology in photometry," Light: Science & Applications, 4, pp. e332-e332, 2015
[3] A. Khazanchi, A. Kanwar, L. SALUJA, A. DAMARA, and V. DAMARA, "OLED: A New Display Technology," International Journal Of Engineering And Computer Science, 1, pp. 75-84, 2012.
[4] Y. Huang, E. L. Hsiang, M. Y. Deng, and S. T. Wu, "Mini-LED, Micro-LED and OLED displays: present status and future perspectives," Light Sci Appl, 9, p. 105, 2020
[5] C. Huang, X. Qian, and R. Yang, "Thermal conductivity of polymers and polymer nanocomposites," Materials Science and Engineering: R: Reports, 132, pp. 1-22, 2018
[6] K. T. S. Kong, M. Mariatti, A. A. Rashid, and J. J. C. Busfield, "Effect of processing methods and functional groups on the properties of multi-walled carbon nanotube filled poly(dimethyl siloxane) composites," Polymer Bulletin, 69, pp. 937-953, 2012
[7] H.-S. Chuang and S. Wereley, "Design, fabrication and characterization of a conducting PDMS for microheaters and temperature sensors," Journal of Micromechanics and Microengineering, 19, 2009
[8] H. S. Tekce, D. Kumlutas, and I. H. Tavman, "Effect of Particle Shape on Thermal Conductivity of Copper Reinforced Polymer Composites," Journal of Reinforced Plastics and Composites, 26, pp. 113-121, 2016
[9] Q. H. Mu, D. Peng, F. Wang, J. H. Li, and S. Zhang, "Thermal Conductivity of Silicone Rubber Filled with Al2O3," Materials Science Forum, 987, pp. 59-63, 2020
[10] B. Lee, J. Z. Liu, B. Sun, C. Y. Shen, and G. C. Dai, "Thermally conductive and electrically insulating EVA composite encapsulant for solar photovoltaic (PV) cell," Express Polymer Letters, 2, pp. 357-363, 2008
[11] Z. Han, J. W. Wood, H. Herman, C. Zhang, and G. C. Stevens, "Thermal properties of composites filled with different fillers.," IEEE, 18 July 2008
[12] I.-L. Ngo, S. Jeon, and C. Byon, "Thermal conductivity of transparent and flexible polymers containing fillers: A literature review," International Journal of Heat and Mass Transfer, 98, pp. 219-226, 2016
[13] H. Ma et al., "Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: a review," Journal of Materials Science, 56, pp. 1064-1086, 2020
[14] S. L. Chuang, Physics of Optoelectronic Devices. Wiley-Interscience, 1995, pp. 37-39.
[15] N. K. Dutta and R. J. Nelson, "The case for Auger recombination in In1−xGaxAsyP1−y," Journal of Applied Physics, 53, pp. 74-92, 1982
[16] A. S. Pratiyush, S. Krishnamoorthy, R. Muralidharan, S. Rajan, and D. N. Nath, "Advances in Ga2O3 solar-blind UV photodetectors," in Gallium Oxide, 2019, pp. 369-399.
[17] F. Kreith, R. M. Manglik, and M. S. Bohn, Principles of Heat Transfer. Cengage Learning, 2010, pp. 9-16.
[18] F. Kreith, R. M. Manglik, and M. S. Bohn, Principles of Heat Transfer. Cengage Learning, 2010, pp. 17-20.
[19] V. P. Astakhov and S. Joksch, Metalworking Fluids (MWFs) for Cutting and Grinding: Fundamentals and Recent Advances. Elsevier, 2012, p. 150.
[20] Z. Han and A. Fina, "Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review," Progress in Polymer Science, 36, pp. 914-944, 2011
[21] Y. Zhao, X. Zeng, L. Ren, X. Xia, X. Zeng, and J. Zhou, "Heat conduction of electrons and phonons in thermal interface materials," Materials Chemistry Frontiers, 5, pp. 5617-5638, 2021
[22] X. Xu, J. Chen, J. Zhou, and B. Li, "Thermal Conductivity of Polymers and Their Nanocomposites," Adv Mater, 30, p. e1705544, Apr 2018
[23] X. He and Y. Wang, "Recent Advances in the Rational Design of Thermal Conductive Polymer Composites," Industrial & Engineering Chemistry Research, 60, pp. 1137-1154, 2021
[24] H. H. Huang, "Thermal analyses and flexible substrate modification for improving lifetime of organic light-emitting diodes," Master, Opto-Mechatronics, Mechanical Engineering, National Central University, 2019.
[25] P. Warrier and A. Teja, "Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles.," Nanoscale Research Letters, 6, 2471556-276X, 2011.
[26] Bruker. "S8 TIGER Series 2 Specifications." Bruker. https://www.bruker.com/en/products-and-solutions/elemental-analyzers/xrf-spectrometers/s8-tiger.html
[27] "TPS 3500熱傳導係數儀產品簡介。." Techmark Precision Instrument Co.,Ltd. https://www.techmaxasia.com/catalog-detail/TPS3500/
[28] 22007-2, ISO, Switzerland, 2008.
[29] Tektronix. Series 2400 SourceMeter® Quick Start Guide
[30] InfraTec. VarioCAM® hr head User Manual
[31] "一般耐火鑄料性質." YU HO REFRACTORIES Co., LTD. http://www.yuhonet.com.tw/03/0202.htm
[32] W. H. McAdams, Heat Transmission. McGraw-Hill, 1954, pp. 165-183.
[33] Y. Zhou, L. Wang, H. Zhang, Y. Bai, Y. Niu, and H. Wang, "Enhanced high thermal conductivity and low permittivity of polyimide based composites by core-shell Ag@SiO2 nanoparticle fillers," Applied Physics Letters, 101, 2012
[34] (2004). NIEA-PA103, PA103環境檢驗檢量線製備及查核指引931129勘誤.
[35] O. Photonics. micro spectrometer SE1020/2020 Series specifications [Online] Available: http://www.comfort.net.tw/oto_pdf/SE_series.pdf
[36] I. Peccell Technologies. "PEC-L11 specifications." Peccell Technologies, Inc. https://secure02.blue.shared-server.net/www.peccell.com/products/m_e.html
[37] A. Abe, T. Nakano, W. Yamashita, K. Fukukawa, M. Okazaki, and S. Tamai, "Theoretical and experimental studies on the mechanism of coloration of polyimides," Chemphyschem, 12, pp. 1367-77, 2011
指導教授 韋安琪(An-Chi Wei) 審核日期 2022-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明