博碩士論文 107328010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.15.27.232
姓名 張立揚(Li-Yang Chang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 移動式顆粒床過濾器應用於去除PM2.5之研究
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究★ 稻殼於流體化床進行快速裂解產製生質燃油之研究
★ 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響★ 反向氣流對微小粉末於儲槽排放行為影響之研究
★ 積層製造自動化粉末回收系統-系統設計及其混合器之優化★ 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響
★ 以實驗方式探討崩塌流場對可侵蝕底床侵蝕與堆積現象之影響★ 超臨界顆粒流場中雙圓柱阻礙物震波交互影響之研究
★ 添加微量液體對振動床中顆粒體分離現象的影響★ 不同表面粗糙度的大顆粒在垂直式振動床中動態行為之研究
★ 二維剪力槽中顆粒體群聚現象之研究探討★ 直渠道顆粒流之顆粒密度分離效應
★ 粉粒體於儲槽排放行為及氣泡現象之研究★ 初始體積占有率影響顆粒崩塌行為之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 自兩次工業革命以來,各國的能源使用早年幾乎均以燃煤發電為主,此發電方式對
環境的衝擊,在過去幾十年受到各國廣泛重視。由於火力發電之燃燒過程將帶來許多其
他副產物(飛灰、底灰、二氧化碳、氮氧化物、硫氧化物及粒狀物等),對環境產生諸多
影響,所以火力發電廠常設置許多環保設備、配套子系統以控制汙染物排放。鑒於已有
研究提出顆粒床過濾器結合靜電集塵之研究,以提升整體對小粒徑的去除效率,本研究
建立在前人開發之顆粒床過濾器的基礎上,參考陶瓷過濾器過濾效能之研究,提出一種
以顆粒床過濾器與陶瓷過濾器串接而成的複合式過濾系統,並將其應用於去除PM2.5。
本研究進行了整體系統於不同溫度下、不同濾材質量流率之實驗,得出常溫、高溫
下對相同濃度含塵氣體之過濾結果;並且討論對不同大小顆粒之分級過濾效率,亦與過
濾機制實驗結果顯示常溫下系統能以99.85%之過濾效率將氣體處理至平均粒徑1.15 μm,
600°C 下能以95.47%之過濾效率將氣體處理至平均粒徑2.43 μm;經過綜合比對可得出
此複合式過濾系統對含塵氣體之處理效能為:將濃度為12000 ppmw 且平均粒徑53.52
μm 的含塵氣體,以大於95.47%之過濾效率處理至PM2.5 等級。
摘要(英) The demand in energy consumption has grown significantly since the Industrial
Revolution. The major source for power generation has mainly based on coal, and will likely
to remain the domination in the foreseeable future because of its economical attractiveness.
However, the environmental impact of the product in flue gas has attracted more and more
attention. Power companies are starting to apply pollution-controlling subsystems in order to
reach environment requirements.
Regarding some research studying a different kind of granular bed filter, combined with
electrostatic enhancement to improve collection efficiency of fine particles, this research
considers a similar approach. By introducing a second-stage filter (Candle Filter) connecting
with the current granular bed filter, a compound filtration system is developed. The system is
aimed to improve the collection efficiency of PM2.5 particulates under various conditions, which
is considered as a shortage of granular bed filters.
By experiment approach, this research studies the filtration results of the compound system
under different parameters, such as experiment temperature, mass flow rate of the filter media,
etc. The mechanism by which the particulates be removed has also been discussed. The
experiment results show a 95.47% collection efficiency for a dust flow with a concentration of
12000 ppmw, lowering the mean diameter of the particulate from 53.52 μm to PM2.5.
關鍵字(中) ★ 顆粒床過濾器
★ 陶瓷過濾器
★ 中高溫除塵
★ 潔淨技術
★ PM2.5
關鍵字(英) ★ Granular Bed Filter
★ Candle Filter
★ Hot gas clean up
★ clean technology
★ PM2.5
論文目次 摘要 ............................................................................................................................................ I
Abstract ....................................................................................................................................II
目錄......................................................................................................................................... III
圖目錄.......................................................................................................................................V
表目錄....................................................................................................................................VII
符號說明.............................................................................................................................. VIII
第一章緒論 ..............................................................................................................................1
1.1 前言.........................................................................................................................1
1.2 研究動機與目的.....................................................................................................3
1.3 文獻回顧.................................................................................................................4
1.4 論文章節架構.........................................................................................................8
第二章實驗設備與方法..........................................................................................................9
2.1 實驗設備.................................................................................................................9
2.1.1 第一段過濾程序..........................................................................................9
2.1.2 第二段過濾程序........................................................................................10
2.1.3 周邊子系統................................................................................................10
2.1.4 量測設備....................................................................................................14
2.2 實驗方法...............................................................................................................15
2.2.1 過濾機制....................................................................................................15
2.2.2 過濾行為....................................................................................................17
2.2.3 過濾器性能指標........................................................................................19
2.2.4 實驗參數....................................................................................................21
2.2.5 實驗步驟....................................................................................................23
第三章實驗結果與討論........................................................................................................31
3.1 過濾器各參數之變化...........................................................................................31
3.1.1 進出口溫度及溫度差................................................................................31
3.1.2 顆粒床進出口壓力及壓力差....................................................................32
3.2 顆粒去除效能之討論...........................................................................................34
3.2.1 受濾材質量流率變化之影響....................................................................34
3.2.2 受實驗溫度變化之影響............................................................................35
3.2.3 小結............................................................................................................36
3.3 小粒徑顆粒去除效能之討論...............................................................................38
3.3.1 重要過濾機制及理論介紹........................................................................38
3.3.2 分級過濾效率結果....................................................................................39
3.3.3 小結............................................................................................................41
第四章結論 ............................................................................................................................53
第五章參考文獻....................................................................................................................54
參考文獻 [1] IEA: www.iea.org/statistics/statisticssearch/
[2] The New Climate Economy (2014). Better Growth, Better Climate - Chapter 4 Energy. p.3.
[3] 綠色和平(2017)。全球暨臺灣燃煤發電不可不知的真相。臺灣綠色和平組織,p.4。
[4] 台灣電力公司,2020,火力發電溫室氣體排放量結構,https://www.taipower.com.tw/tc/Chart.aspx?mid=194/
[5] IPCC (2012). Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN), p.973, Annex II: Methodology.
[6] Whitaker, M. et al. (2012). Life cycle greenhouse gas emissions of coal‐fired electricity generation. Journal of Industrial Ecology, 16, S53-S72.
[7] 行政院環保署主管法規共用系統,2014,氣渦輪機組及複循環空污染物排放標準,https://oaout.epa.gov.tw/law/LawContent.aspx?id=FL015370/
[8] Xiao, G., Wang, X., Zhang, J., Ni, M., Gao, X., Luo, Z., & Cen, K. (2013). Granular bed filter: a promising technology for hot gas clean-up. Powder technology, 244, 93-99.
[9] 張立群,「移動式顆粒床應用於中高溫除塵」,國立中央大學,碩士論文,民國一O七年。
[10] Self, S. A., Cross, R. H., & Eustis, R. H. (1981). Electrical augmentation of granular bed filters. Environment International, 6(1-6), 397-414.
[11] Guillory, J. L., Placer, F. M., & Grace, D. S. (1981). Electrostatic enhancement of moving-bed granular filtration. Environment International, 6(1-6), 387-395.
[12] Zevenhoven, C. A. P., Scarlett, B., & Andries, J. (1992). The filtration of PFBC combustion gas in a granular bed filter. Filtration & separation, 29(3), 239-238.
[13] Goren, S. L. (1979). Aerosol filtration by granular beds, in EPA Symp. on the Transfer and Utilization of Particulate Control Technology.
[14] Sittig, M. (1977). Particles and fine dust removal: process and equipment.
[15] Juvinall, R. A., Kessie, R. W., & Steindler, M. J. (1970). SAND-BED FILTRATION OF AEROSOLS: A REVIEW OF PUBLISHED INFORMATION ON THEIR USE IN INDUSTRIAL AND ATOMIC ENERGY FACILITIES.
[16] Engelbrecht, H. L. (1965). The gravel bed filter—a new approach to gas cleaning. Journal of the Air Pollution Control Association, 15(2), 43-45.
[17] Thring, M. W., & Strauss, W. (1963). The Effect of High Temperatures on Particle Collection Mechanisms. Trans. Instn. Chem. Engrs., 41, 234-254.
[18] Miyamoto, S., & Bohn, H. L. (1974). Filtration of airborne particulates by gravel filters: I. Initial collection efficiency of a gravel layer. Journal of the Air Pollution Control Association, 24(11), 1051-1054.
[19] Squires, A. M., & Pfeffer, R. (1970). Panel bed filters for simultaneous removal of fly ash and sulfur dioxide: I. Introduction. Journal of the Air Pollution Control Association, 20(8), 534-538.
[20] Johnson, I., Snyder, R. B., Swift, W. M., Lee, S. H., Smith, G. W., & Jonke, A. A. (1978). Flue gas cleaning for pressurized fluidized-bed combustors (No. CONF-781109-13). Argonne National Lab., IL (USA).
[21] Nutkis, M. S., Loughnane, M. D., Ernst, M., Bertrand, R. R., & Matulevicius, E. S. (1979). Hot corrosion/erosion testing of materials for application to advanced power conversion systems using coal-derived fuels. Task II: fluidized bed combustion. Final report, July 1, 1976-September 30, 1979 (No. FE-2452-39). Exxon Research and Engineering Co., Linden, NJ (USA).
[22] Tsubaki, J., & Tien, C. (1988). Gas filtration in granular moving beds. An experimental study. Can. J. Chem. Eng.;(Canada), 66(2).
[23] Otani, Y., Miyajima, K., & Emi, H. (1990). Collection performance of moving granular bed filters. In Proceedings of the International Aerosol Conference (p.733).
[24] Hsiau, S. S., Smid, J., Tsai, F. H., Kuo, J. T., & Chou, C. S. (2004). Placement of flow-corrective elements in a moving granular bed with louvered-walls. Chemical Engineering and Processing: Process Intensification, 43(8), 1037-1045.
[25] Johanson, J. R. (1966). The Use of Flow-Corrective Inserts in Bins. ASME. J. Eng. Ind., 88(2), 224-230.
[26] Kuo, J. T., Smid, J., Hsiau, S. S., Wang, C. Y., & Chou, C. S. (1998). Stagnant zones in granular moving bed filters for flue gas cleanup. Filtration & separation, 35(6), 529-534.
[27] Hsiau, S. S., Smid, J., Tsai, S. A., Tzeng, C. C., & Yu, Y. J. (2008). Flow of filter granules in moving granular beds with louvers and sublouvers. Chemical Engineering and Processing: Process Intensification, 47(12), 2084-2097.
[28] Hsiau, S. S., Smid, J., Chyou, Y. P., Liu, T. C., Huang, T. C., & Hsu, C. J. (2013). Impact of flow-corrective insert on flow patterns in two-dimensional moving bed. Chemical Engineering and Processing: Process Intensification, 73, 7-15.
[29] 古政芳,「流動式顆粒床過濾器阻礙物配置之設計」,
國立中央大學,碩士論文,民國八十九年。
[30] 陳一順,「流動式顆粒床過濾器三維流場觀察與冷性能測試」,
國立中央大學,碩士論文,民國九十年。
[31] 馬家駒,「流動式顆粒床過濾器冷性能測試」,
國立中央大學,碩士論文,民國九十一年。
[32] Peukert, W., & Löffler, F. (1991). Influence of temperature on particle separation in granular bed filters. Powder technology, 68(3), 263-270.
[33] Guillory, J. L. (1978). Granular bed filter development program. Cold flow test program, data analysis and observations (No. FE-2579-15). Combustion Power Co., Inc., Menlo Park, Calif.(USA).
[34] Moresco, L. L., Cooper, J., & Guillory, J. (1981). High Temperature Particulate Removal by Granular Bed Filtration.
[35] Wade, G., Wigton, H., Guillory, J., Goldbach, G., & Phillips, K. (1978). Granular Bed Filter Development Program. Final report (No. FE-2579-19). Combustion Power Co., Inc., Menlo Park, CA (USA).
[36] Geffken, J., et al. (1979) Symp. on Transfer and Utilization of Particulate Control Technology, Vol. 3, EPA 600/7-70-044c, pp. 471-488.
[37] Goren, S. L. (1979) Symp. on Transfer and Utilization of Particulate Control Technology, Vol. 3, EPA-600/7-79-044c, pp. 459-469.
[38] Gal, E. G. I. R., Tardos, G., & Pfeffer, R. (1985). A study of inertial effects in granular bed filtration. AIChE journal, 31(7), 1093-1104.
[39] Gutfinger, C., & Tardos, G. I. (1979). Theoretical and experimental investigation on granular bed dust filters. Atmospheric Environment (1967), 13(6), 853-867.
[40] Jung, Y., Walata, S. A., & Tien, C. (1989). Experimental determination of the initial collection efficiency of granular beds in the inertial-impaction-dominated region. Aerosol science and technology, 11(2), 168-182.
[41] Gutfinger, C., Fichman, M., & Pnueli, D. (1991). Shadow effect and filtration efficiency of a granular-bed filter. Aerosol science and technology, 15(4), 217-227.
[42] Kalinowski, T. W., & Leith, D. (1983). Aerosol filtration by a cocurrent moving granular bed: penetration theory. Environmental science & technology, 17(1), 20-26.
[43] Guillory, J. L. (1982, February). Progress in high-temperature moving bed granular filter development at combustion power company. In US Dept. of Energy, Proc. 2nd Annual Contractors′ Meeting on Contaminant Control in Hot Coal Derived Gas Streams, 87-115.
[44] Tsubaki, J., & Tien, C. (1988). Gas filtration in granular moving beds. An experimental study. Can. J. Chem. Eng.;(Canada), 66(2).
[45] Newby, R. A., Yang, W. C., & Smeltzer, E. E. (1992). Standleg Moving Granular Bed Filter development program (No. DOE/MC/27259-93/C0094; CONF-920951-26). Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center.
[46] Bai, J. C., Wu, S. Y., & Lee, A. S. (2006). Dust collection efficiency analysis in a two-dimensional circulating granular bed filter. Journal of the Air & Waste Management Association, 56(5), 684-694.
[47] Blasewitz, A. G., & Judson, B. F. (1955). Filtration of radioactive aerosols by glass fibers. Air Repair, 4(4), 223-229.
[48] Moresco, L. L., & Ferguson, J. (1981). Granular bed filter development program, Phase II. Quarterly report, January-March 1981 (No. DOE/ET/10373-T8). Combustion Power Co., Inc., Menlo Park, CA (USA).
[49] Kalinowski, T. W., & Leith, D. (1981). Aerosol filtration by a cocurrent moving granular bed: Penetration mechanisms. Environment International, 6(1-6), 379-386.
[50] Peukert, W., & Löffler, F. (1990). Emission Control of Particles and Gaseous Pollutants with a High-Temperature Granular Bed Filter. KONA Powder and Particle Journal, 8, 155-159.
[51] Tsubaki, J., & Tien, C. (1988). Gas filtration in granular moving beds. An experimental study. Can. J. Chem. Eng.;(Canada), 66(2).
[52] Newby, R. A., Yang, W. C., & Smeltzer, E. E. (1992). Standleg Moving Granular Bed Filter development program (No. DOE/MC/27259-93/C0094; CONF-920951-26). Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center.
[53] Chen, Y. S., Hsiau, S. S., Lai, S. C., Chyou, Y. P., Li, H. Y., & Hsu, C. J. (2009). Filtration of dust particulates with a moving granular bed filter. Journal of hazardous materials, 171(1-3), 987-994.
[54] Chen, Y. S., & Hsiau, S. S. (2009). Cake formation and growth in cake filtration. Powder Technology, 192(2), 217-224.
[55] Chen, Y. S., & Hsiau, S. S. (2009). Influence of filtration superficial velocity on cake compression and cake formation. Chemical Engineering and Processing: Process Intensification, 48(5), 988-996.
[56] 陳一順,「流動式顆粒床過濾器之濾餅機制行為研究」,
國立中央大學,博士論文,民國九十八年。
[57] Flagan, R. C., & Seinfeld, J. H. (2012). Fundamentals of air pollution engineering. Courier Corporation.
[58] Brown, R. C., & Colver, G. M. (2002). Control of interfacial dust cake to improve efficiency of moving bed granular filters. Iowa State University (US).
[59] Lee, K. W. (1981). Maximum penetration of aerosol particles in granular bed filters. Journal of Aerosol Science, 12(1), 79-87.
[60] Fuchs, N. A. (1989). The Mechanics of Aerosols, Revised Edition. C. N. Davies, Translator & Editor, Dover Publications, Inc., Mineola, N.Y.
[61] Brown, R. C., Shi, H., Colver, G., & Soo, S. C. (2003). Similitude study of a moving bed granular filter. Powder Technology, 138(2-3), 201-210.
[62] Chun-Te Lin, J., Hsiao, T. C., Hsiau, S. S., Chen, D. R., Chen, Y. K., Huang, S. H., & Chang, M. B. (2018). Effects of temperature, dust concentration, and filtration superficial velocity on the loading behavior and dust cakes of ceramic candle filters during hot gas filtration. Separation and Purification Technology, 198, 146-154.
[63] Shi, K. Y., Yang, G. H., Huang, S., Tian, S. R., Hu, Z. F., & Huang, B. L. (2015). Study on filtering characteristics of aerosol particulates in a powder-grain dual-layer granular bed. Powder Technology, 272, 54-63.
[64] 陸亞俊、馬最良、鄒平華(2007)。暖通空調(第二版)。北京:中國建築工業出版社,237-242。
[65] 許端佑,「移動式顆粒床之進口粉塵濃度與再生循環對過濾效率的影響」,國立中央大學,碩士論文,民國一O六年。
[66] 陳世偉(1990),空氣淨化工程學,中華水電空調雜誌社出版,96-108。
[67] Yu, Y., Tao, Y., Wang, F. L., Chen, X., & He, Y. L. (2020). Filtration performance of the granular bed filter used for industrial flue gas purification: A review of simulation and experiment. Separation and Purification Technology, 251, 117318.
[68] Bruce R. Munson, Donald F. Young, Theodore H. Okiishi, Wade W. Huebsch. (2010). Fundamentals of Fluid Mechanics: Student Value Edition 6th Edition Student. Wiley. 96-103.
[69] Bruce R. Munson, Donald F. Young, Theodore H. Okiishi, Wade W. Huebsch. (2010). Fundamentals of Fluid Mechanics: Student Value Edition 6th Edition Student. Wiley. 18.
[70] D′Ottavio, T., & Goren, S. L. (1982). Aerosol capture in granular beds in the impaction dominated regime. Aerosol Science and Technology, 2(2), 91-108.
[71] Parker, R., Calvert, S., Drehmel, D., & Abbott, J. (1981). Inertial impaction of fine particles at high temperature and high pressure. Journal of Aerosol Science, 12(4), 297-306.
[72] Daisley R. E. , Fuchs M. , Davies C. N. (Ed.). (1964). The Mechanics of Aerosols. Pergamon.
[73] Seville, J. P. (Ed.). (2013). Gas cleaning in demanding applications. Springer Science & Business Media. 170-192.
[74] Siegfried Ripperger, Walter Gösele, Christian Alt, Thomas Loewe. (2013). Filtration, 1. Fundamentals. John Wiley & Sons. 688-689.
[75] Guillory, J. L. (1980, March). High-Temperature Particulate Removal by Moving Bed Granular Filtration. In Turbo Expo: Power for Land, Sea, and Air (Vol. 79665, p. V01BT02A022). American Society of Mechanical Engineers.
[76] Coury, J. R., Thambimuthu, K. V., & Clift, R. (1987). Capture and rebound of dust in granular bed gas filters. Powder technology, 50(3), 253-265.
指導教授 蕭述三 審核日期 2021-10-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明