博碩士論文 107328016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:158 、訪客IP:18.224.0.25
姓名 黃俊偉(Chun-Wei Huang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 多孔石墨烯邊界態之氮改質於超級電容的效能研究
(Study on Edge-Nitrogen Doped Graphene for High Performance Supercapacitors)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究
★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能
★ 石墨烯功能性改質於鋰離子電池負極材料 之研究★ 紫外光輻照於輔助轉印高品質石墨烯之研究
★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究
★ 真空壓印於二維材料轉印製程之研究★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討
★ 氟化石墨烯複合材料塗層於多功能披覆之研究★ 三維結構之微孔石墨烯於超級電容器之應用與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來氮摻雜石墨烯在諸多領域的研究中展現了比本質石墨烯更優異的電化學特性,石墨烯的氮摻雜可分為三種主要型態,其中對於電化學增益最大的屬於邊界態的氮改質(吡啶(pyridinic)和吡咯(pyrrolic)),透過多孔石墨烯大量裸露的邊界缺陷,促使氮摻雜的過程中石墨烯的邊界缺陷能成為摻雜的優選位置,進而比較出邊界態氮摻雜對電化學及儲能應用上的增益。

本研究利用奈米銅粒子和電化學剝離石墨烯複合物(Cu-ECG)合成氮摻雜多孔石墨烯,奈米銅粒子可以在石墨烯片層上蝕刻出不同大小的孔洞(階層孔洞),進而利用氨氣熱退火(Ammonia annealing)實現氮摻雜的效果。透過XPS和EDS元素分析可得知,氮摻雜後的多孔石墨烯可同時擁有三種氮摻雜型態,且透過對多孔石墨烯的氮摻雜不僅可以提升氮摻雜率,甚至可有效提升邊界態氮摻雜的比例。

相較於多孔石墨烯,邊界態氮摻雜的多孔石墨烯在高質量負載時的比電容值可增加49.0%且擴散係數也提升了44.4%,且經過15000次的循環測試之後仍可保有高於99%的電容維持率,另外在BET分析中氮摻雜石墨烯的比表面積提升了兩倍以上,且孔隙的尺寸分布也較氮摻雜前更廣。本研究證實氮摻雜可以在不破壞原有特性的情況下有效的提升多孔石墨烯的電化學表現,同時也探討了邊界態氮改質的多寡對氮摻雜多孔石墨烯儲能表現的影響。
摘要(英) N-doped holey graphene is promoted to solve the main issue of graphene for supercapacitor such as volumetric and gravimetric also the ion-transport mobility. This work proposed two strategies to synthesis N-doped holey graphene with ammonia (NH3) as N-doped precursor. This first strategy, the holey graphene (HG) synthesized by rationally design of the Cu nano catalyst in the annealing method, then the N-doped holey graphene (N-EHG) is produced by post annealing HG in NH3 gas. The second strategy is proposed by post-annealing treatment of Cu nano catalyst/graphene (Cu-Graphene) in NH3 gas to produced N-doped graphene (N-BHG).
Both N-EHG and N-BHG resulted the holey graphene, the edge N-doping (pyridinic and pyrrolic) graphene and graphitic type of N-doping. However, the N-EHG achieved higher surface are up to 509.03 m2/g (2-fold higher than HG) than N-BHG 264.65 m2/g. Also the pore size distribution of N-HG is larger than HG and N-BHG. In the electrochemical application, the N-EHG demonstrated higher specific capacity up to 449.2 mF/cm2 that 49.0% higher than HG (404.2 mF/cm2). In the stability test, the N-EHG could maintain 99% capacity after more than 15,000 cycles retention testing. The diffusion coefficient of N-EHG is increased 44.4% then HG in the high mass loading (15 mg/cm2) that indicate excellent ionic transport. Finally, our method was effectively to synergetic holey and N-doped graphene that a low-cost, highly efficient for supercapacitor application.
關鍵字(中) ★ 氮摻雜石墨烯
★ 多孔石墨烯
★ 超級電容
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iii
總目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 石墨烯 1
1-2 氮摻雜石墨烯 3
第二章 研究背景與文獻回顧 5
2-1 多孔石墨烯的製造與應用 5
2-1-1 物理方法 5
2-1-2 化學方法 8
2-1-3 多孔石墨烯應用 13
2-2 氮摻雜石墨烯的製備方法及應用 17
2-2-1化學氣相沉積(Chemical vapor deposition, CVD) 17
2-2-2 熱退火(Thermal annealing) 19
2-2-3 水熱法(Hydrothermal method) 22
2-2-4 氮摻雜石墨烯在儲能材料的效能提升與機制 23
2-2-5 研究動機 27
第三章 實驗方法與分析 29
3-1 實驗用品與儀器 29
3-2 氮摻雜多孔石墨烯之製備流程 32
3-2-1 電化學剝離石墨烯之製備 32
3-2-2 奈米銅粒子催化劑-石墨烯(Cu-ECG)複合物粉體製作: 32
3-2-3 多孔石墨烯及氮摻雜多孔石墨烯的形成: 33
3-2-4 氨氣熱處理形成氮摻雜多孔石墨烯 36
3-3 試片名稱定義 37
3-4 電化學量測之實驗流程 38
3-4-1 電極製備 38
3-4-2 循環伏安法 (Cyclic voltammetry, CV) 40
3-4-3 計時電位法 (Chronopotentiometry, CP) 40
3-4-4 交流阻抗分析(Electrochemical impedance spectroscopy, EIS) 41
第四章 結果與討論 42
4-1 材料特性分析 42
4-1-1 TEM表面形貌觀察 42
4-1-4 XPS分析結果與討論 45
4-1-5 EDS 元素線分析結果與討論 47
4-1-6 接觸角測量 49
4-1-7 Raman 光譜分析結果與討論 49
4-1-8 BET分析結果與討論 51
4-2電化學特性分析 53
4-2-1 討論多孔石墨烯(HG)之電化學特性 53
4-2-2 討論氮摻雜多孔石墨烯(N-EHG)之電化學特性 56
4-2-3 討論氨氣蝕刻之多孔石墨烯(N-BHG)電化學特性 57
4-2-4 三極式電化學特性綜合比較 59
4-2-5 二極式電化學特性比較 66
第五章 結論 69
參考文獻 1. Lloyd-Hughes, J. and T.-I. Jeon, A Review of the Terahertz Conductivity of Bulk and Nano-Materials. Journal of Infrared, Millimeter, and Terahertz Waves, 2012. 33(9): p. 871-925.
2. Xu, Y., et al., Holey graphene frameworks for highly efficient capacitive energy storage. Nat Commun, 2014. 5: p. 4554.
3. Fischbein, M.D. and M. Drndić, Electron beam nanosculpting of suspended graphene sheets. Applied Physics Letters, 2008. 93(11).
4. Celebi, K., et al., Ultimate permeation across atomically thin porous graphene. Science, 2014. 344(6181): p. 289-92.
5. Koenig, S.P., et al., Selective molecular sieving through porous graphene. Nat Nanotechnol, 2012. 7(11): p. 728-32.
6. Surwade, S.P., et al., Water desalination using nanoporous single-layer graphene. Nat Nanotechnol, 2015. 10(5): p. 459-64.
7. Xu, H., L. Ma, and Z. Jin, Nitrogen-doped graphene: Synthesis, characterizations and energy applications. Journal of Energy Chemistry, 2018. 27(1): p. 146-160.
8. Inagaki, M., et al., Nitrogen-doped carbon materials. Carbon, 2018. 132: p. 104-140.
9. Zhang, L.S., et al., Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell. Phys Chem Chem Phys, 2010. 12(38): p. 12055-9.
10. Jeong, H.M., et al., Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett, 2011. 11(6): p. 2472-7.
11. Zhao, X., et al., Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano, 2011. 5(11): p. 8739-49.
12. Wang, S., et al., Room-temperature synthesis of soluble carbon nanotubes by the sonication of graphene oxide nanosheets. J Am Chem Soc, 2009. 131(46): p. 16832-7.
13. Wang, H., et al., Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization. Journal of Materials Chemistry A, 2013. 1(38).
14. Xu, Y., et al., Solution Processable Holey Graphene Oxide and Its Derived Macrostructures for High-Performance Supercapacitors. Nano Lett, 2015. 15(7): p. 4605-10.
15. Liu, D., Q. Li, and H. Zhao, Electrolyte-assisted hydrothermal synthesis of holey graphene films for all-solid-state supercapacitors. Journal of Materials Chemistry A, 2018. 6(24): p. 11471-11478.
16. Dutta, D., et al., Nanocatalyst-Assisted Fine Tailoring of Pore Structure in Holey-Graphene for Enhanced Performance in Energy Storage. ACS Appl Mater Interfaces, 2019. 11(40): p. 36560-36570.
17. Liang, X., et al., Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett, 2010. 10(7): p. 2454-60.
18. Cohen-Tanugi, D. and J.C. Grossman, Water desalination across nanoporous graphene. Nano Lett, 2012. 12(7): p. 3602-8.
19. Rollings, R.C., A.T. Kuan, and J.A. Golovchenko, Ion selectivity of graphene nanopores. Nat Commun, 2016. 7: p. 11408.
20. Wei, D., et al., Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Lett, 2009. 9: p. 1752-1758.
21. Liu, Q., et al., N-doped graphene/carbon composite as non-precious metal electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2012. 81: p. 313-320.
22. Kim, H.-K., et al., Scalable fabrication of micron-scale graphene nanomeshes for high-performance supercapacitor applications. Energy & Environmental Science, 2016. 9(4): p. 1270-1281.
23. Tang, Y.-J., et al., Molybdenum Disulfide/Nitrogen-Doped Reduced Graphene Oxide Nanocomposite with Enlarged Interlayer Spacing for Electrocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016. 6(12).
24. Lherbier, A., A.R. Botello-Mendez, and J.C. Charlier, Electronic and transport properties of unbalanced sublattice N-doping in graphene. Nano Lett, 2013. 13(4): p. 1446-50.
25. Wu, Z.-S., et al., Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries. ACSNANO, 2011. 5: p. 5463-5471.
26. Wang, H., T. Maiyalagan, and X. Wang, Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis, 2012. 2(5): p. 781-794.
27. Wu, Z.-S., et al., Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries. ACSNANO, 2011. 5: p. 5463–5471.
28. Zhang, Y., et al., The production of nitrogen-doped graphene from mixed amine plus ethanol flames. Thin Solid Films, 2012. 520(23): p. 6850-6855.
29. Guo, H.-L., et al., Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents. J. Mater. Chem. A, 2013. 1(6): p. 2248-2255.
30. Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nat Mater, 2008. 7(11): p. 845-54.
31. Eftekhari, A., The mechanism of ultrafast supercapacitors. Journal of Materials Chemistry A, 2018. 6(7): p. 2866-2876.
32. Huang, J., K. Wang, and Z. Wei, Conducting polymernanowire arrays with enhanced electrochemical performance. J. Mater. Chem., 2010. 20(6): p. 1117-1121.
33. Wang, K., et al., High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater, 2013. 25(10): p. 1494-8.
34. Wang, K., et al., Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites. Journal of Materials Chemistry, 2011. 21(41).
35. Bai, X., et al., 3D flowerlike poly(3,4-ethylenedioxythiophene) for high electrochemical capacitive energy storage. Electrochimica Acta, 2013. 106: p. 219-225.
36. Balan, B.K., et al., Carbon nanofiber–RuO2–poly(benzimidazole) ternary hybrids for improved supercapacitor performance. RSC Advances, 2013. 3(7).
37. Zhang, X., et al., Hydrothermal-Reduction Synthesis of Manganese Oxide Nanomaterials for Electrochemical Supercapacitors. Journal of Nanoscience and Nanotechnology, 2010. 10(11): p. 7711-7714.
38. Zhang, X., et al., Comparative performance of birnessite-type MnO2 nanoplates and octahedral molecular sieve (OMS-5) nanobelts of manganese dioxide as electrode materials for supercapacitor application. Electrochimica Acta, 2014. 132: p. 315-322.
39. Feng, L., et al., Recent progress in nickel based materials for high performance pseudocapacitor electrodes. Journal of Power Sources, 2014. 267: p. 430-444.
40. Nwanya, A.C., et al., Maize (Zea mays L.) fresh husk mediated biosynthesis of copper oxides: Potentials for pseudo capacitive energy storage. Electrochimica Acta, 2019. 301: p. 436-448.
41. Ambade, R.B., et al., Polythiophene infiltrated TiO2 nanotubes as high-performance supercapacitor electrodes. Chem Commun (Camb), 2013. 49(23): p. 2308-10.
42. SAIKA, T., et al., Study of Hydrogen Supply System with Ammonia Fuel. JSME International Journal, 2006. 49: p. 78-83.
43. Hsieh, C.-T., et al., Electrochemical Capacitors Based on Graphene Oxide Sheets Using Different Aqueous Electrolytes. The Journal of Physical Chemistry C, 2011. 115(25): p. 12367-12374.
44. Zhao, J., et al., Nitrogen- and phosphorus-codoped carbon-based catalyst for acetylene hydrochlorination. Journal of Catalysis, 2019. 373: p. 240-249.
45. Wang, L., et al., Nitrogen doped graphene: influence of precursors and conditions of the synthesis. J. Mater. Chem. C, 2014. 2(16): p. 2887-2893.
46. Geng, D., et al., Nitrogen doping effects on the structure of graphene. Applied Surface Science, 2011. 257(21): p. 9193-9198.
47. Geng, D., et al., High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy & Environmental Science, 2011. 4(3).
48. Bai, Y., et al., Formation process of holey graphene and its assembled binder-free film electrode with high volumetric capacitance. Electrochimica Acta, 2016. 187: p. 543-551.
49. Zoromba, M.S., et al., Electrochemical Activation of Graphene at Low Temperature: The Synthesis of Three-Dimensional Nanoarchitectures for High Performance Supercapacitors and Capacitive Deionization. ACS Sustainable Chemistry & Engineering, 2017. 5(6): p. 4573-4581.
50. Cheng, H., et al., Supermolecule Self-Assembly Promoted Porous N, P Co-Doped Reduced Graphene Oxide for High Energy Density Supercapacitors. ACS Applied Energy Materials, 2019. 2(6): p. 4084-4091.
51. Yan, J., et al., Interconnected Frameworks with a Sandwiched Porous Carbon Layer/Graphene Hybrids for Supercapacitors with High Gravimetric and Volumetric Performances. Advanced Energy Materials, 2014. 4(13).
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明