博碩士論文 107328602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.137.192.3
姓名 費多尼(Frandhoni Utomo)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 多種冷媒應用在液化天然氣之中間流體式蒸發器之熱傳分析
(Thermal Design of Modified Intermediate Fluid Vaporizer Using Various Refrigerants as Intermediate Fluid for Liquified Natural Gas)
相關論文
★ 不同集管型式多流道熱交換器流動分佈研究★ 冷媒R-245fa於不同石墨烯塗佈鰭管上凝結熱傳性能之實驗分析
★ 低溫熱管設計及性能研究★ 吸附式空調系統之微鰭板蒸發/冷凝器凝結熱傳增強性能研究
★ 平板震盪型熱管均熱片研究★ 薄矽膠層吸附床之性能研究
★ 小型吸附式空調系統研究★ 變頻空調機在不同環境下之控制策略
★ 水-空氣在板式熱交換器內的流動觀察★ 以紅外線熱像分析冷媒R410A在板式熱交換器內之蒸發熱傳性能
★ 不同粒徑微多孔表面在狹小空間內之池沸騰熱傳性能研究★ 梯形流道表面之池沸騰熱傳性能研究
★ 石墨烯塗佈銅管外凝結熱傳性能研究★ 超臨界R-410A與R-32熱傳及壓降性能之研究
★ 製冷劑R-245fa在石墨烯塗層中的冷凝傳熱整體翅片管★ 不同性能風扇對熱傳增強鰭片之性能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今有需多LNG蒸發器已被應用於工業上,例如開放式蒸發器、自然空氣蒸
發器、沉浸式蒸發器及中間流體式蒸發器。由於LNG在運送目的地時需要透
過再汽化過程能於管線中運輸,因此改善再汽化過程式重要的課題。由於目前
較常用於再汽化過程之蒸發器為殼管蒸發器,其再汽化過程需要大量的熱傳面
積,導致蒸發器體積需求很大,成本造價昂貴。中間流體式蒸發器由於其密集
式的設計及有較高的性能,因此能應用於改善成本昂貴的問題。
本研究透過改善中間流體式蒸發器(本文為板式熱交換器)來取代原本的殼管
式蒸發器以提高其熱傳性能。本實驗分析六種不同冷媒於不同飽和溫度之熱傳
性能影響。實驗結果顯示,隨著飽和溫度的提高,蒸發器所需要的熱傳面積會
增加,冷凝器上的熱傳面積會縮小,兩者相加達到最小面積在飽和溫度為24
7K。此外,在不同冷媒實驗中以二甲醚之熱傳性能為最佳。
實驗還針對上述兩種不同蒸發器之應用進行分析與比較。結果顯示相比殼管式
蒸發器,板式熱交換器的熱傳面積可以減少400%,而熱傳性能也比殼管式
蒸發器多了4倍。此外,實驗也針對不同地點蒸發器設置進行比較與討論。由
於海水的平均溫度會影響中間流體式蒸發器的設置地點,在海水平均溫度較高
的國家,適合安裝中間流體式蒸發器。然而在海水平均溫度較低的國家,中間
流體式蒸發器與殼管式蒸發器所需要的熱傳面積差異小於25%,因此相較於
前者,兩者差異沒有很大。
摘要(英) The required regasification terminal of LNG remains researchers to develop a
new model for LNG vaporizer to decreasing the cost. Various LNG vaporizer has
been developed, such as open rack vaporizer, ambient air vaporizer, submerged
combustion vaporizer, and intermediate fluid vaporizer. Intermediate fluid vaporizer
remains the lowest cost due to its compact design and high thermal performance.
However, the existing model was employing shell and tube as a thermolator to
reheating natural gas to become superheated natural gas. It contributes more than 50%
of the total required heat transfer area of the system, as found by the previous study.
Furthermore, this study has been conducted by modified the IFV in replacing
the shell and tube heat exchanger of thermolator to plate heat exchanger to enhance
the heat transfer performance. The effect of six intermediate fluids on the heat transfer
performance is compared in a wide saturation temperature range. Dimethyl ether has
the best performance compared to the rest of the intermediate fluids. The required
heat transfer area on the evaporator increased and on the condenser decreased with an
increasing intermediate fluid saturation temperature. The minimum required heat
transfer area for both condenser and evaporator is at 247 K. The pressure drop in the
evaporator increased with saturation temperature.
Moreover, The replacing shell and tube to the plate heat exchanger on the
thermolator of IFV were compared and analyzed. Employing plate heat exchanger in
thermolator can reduce 400% of the required heat transfer area and result in four times
higher heat transfer coefficient by replacing shell and tube. In addition. The location
of the installation modified IFV due to its average seawater temperature was
discussed. The countries with higher average seawater temperatures, the most
economically suitable for installing the modified IFV. Although it is installed in the
lower average seawater temperature, the heat transfer area contributions from the
plate heat exchanger thermolator are not as lower as 25% of the heat transfer area of
the rest of the system. It is much lower than the heat transfer area contributions of the
shell and tube thermolator to the entire system that have been done by the previous
work.
關鍵字(中) ★ 熱傳表現
★ LNG再汽化
★ 中間流體式蒸發器
★ 板式熱交換器
★ LNG設置地點
關鍵字(英) ★ Thermal Performance
★ LNG Regasification
★ Modified Intermediate Fluid Vaporizer
★ Plate Heat Exchanger
★ LNG Terminal Location
論文目次 TABLE OF CONTENT
摘要.......................................................................................................................... v
ABSTRACT ...........................................................................................................vi
ACKNOWLEDGEMENTS ............................................................................... vii
LIST OF FIGURE ................................................................................................. x
LIST OF TABLE ................................................................................................ xii
NOMENCLATURES ........................................................................................ xiii
CHAPTER I ........................................................................................................... 1
INTRODUCTION.................................................................................................. 1
1.1 Background ........................................................................................................ 1
1.2 Research Objectives ........................................................................................... 8
CHAPTER II .......................................................................................................... 9
LITERATURE REVIEW ..................................................................................... 9
2.1 Intermediate Fluid Vaporizer ............................................................................. 9
2.2 Comparison between Shell and Tube Heat Exchanger and Plate Heat
Exchanger .............................................................................................................. 15
2.3 Working Fluid .................................................................................................. 16
2.3.1 Heat Source ........................................................................................... 16
2.3.2 Intermediate Fluid ................................................................................. 17
2.4 Summary .......................................................................................................... 17
CHAPTER III ...................................................................................................... 19
METHODOLOGY .............................................................................................. 19
3.1 Physical Model................................................................................................. 19
3.2 Calculation Procedure ...................................................................................... 20
3.2.1 Calculation Procedure of Condenser ..................................................... 21
3.2.2 Calculation Procedure of Thermolator .................................................. 27
3.2.3 Calculation Procedure of the Evaporator .............................................. 32
CHAPTER IV....................................................................................................... 40
RESULT AND DISCUSSION ............................................................................ 40
4.1 Influences of the Intermediate Fluids Types .................................................... 40
4.2 Influences of the Intermediate fluid saturation temperature ............................ 45
viii

4.3 Thermal Performance Comparison Between Plate Heat Exchanger and Shell
and Tube in Thermolator ....................................................................................... 48
4.4 Influences of the Seawater Inlet Temperature (LNG Terminal Location) ...... 49
CHAPTER V ........................................................................................................ 53
CONCLUSION .................................................................................................... 53
5.1 Conclusion and Recommendation ................................................................... 53
參考文獻 REFERENCES

[1] Foss, M.M., Introduction to LNG: An overview on liquefied natural gas (LNG),
its properties, the LNG industry, and safety considerations. 2012, Center for
Energy Economy, Bureau of Economic Geology, cott W. Tinker, Director
Jackson School of Geosciences, The University of Texas at Austin.
[2] Liu, S., W. Jiao, and H. Wang, Three-dimensional numerical analysis of the
coupled heat transfer performance of LNG ambient air vaporizer. Renewable
Energy, 2016. 87: p. 1105-1112.
[3] Ippolito SB, G.B., Ünlü MS Theoretical analysis of numerical aperture
increasing lens microscopy. J Appl Phys 97:053105., (2005)
Patel, D., Mak, J., Rivera, D, Angtuaco, J. Lng-Vaporizer Selection Based on
Site Ambient Conditions. in The 17th International Conference & Exhibition
on Liquefied Natural Gas. Houston, Texas.
[5] Atienza-Márquez, A., J.C. Bruno, and A. Coronas, Cold recovery from LNGregasification
for polygeneration
applications.
Applied Thermal
Engineering,
2018.
132:
p. 463-478.
[4]
[6] Pan, J., R. Li, T. Lv, G. Wu, and Z. Deng, Thermal performance calculation
and analysis of heat transfer tube in super open rack vaporizer. Applied
Thermal Engineering, 2016. 93: p. 27-35.
[7] Deng, Z., K. Hui, Y. Zhang, and Y. Cao, Numerical simulation analysis of the
flow field and convective heat transfer in new super open rack vaporizer.
Applied Thermal Engineering, 2016. 106: p. 721-730.
[8] Han, C.-L., J.-J. Ren, Y.-Q. Wang, and M.-S. Bi, Experimental studies of
shell-side fluid flow and heat transfer characteristics in a submerged
combustion vaporizer. International Journal of Heat and Mass Transfer, 2016.
101: p. 436-444.
[9] Qi, C., W. Wang, B. Wang, Y. Kuang, and J. Xu, Performance analysis of
submerged combustion vaporizer. Journal of Natural Gas Science and
Engineering, 2016. 31: p. 313-319.
[10] Iwasaki, M., Egashira, S., Oda, T., Asada, K., Sugino, K., Intermediate fluid
type vaporizer, and natural gas supply method using the vaporizer, U.S.
Patent, Editor. 2000.
[11] Pacio, J.C. and C.A. Dorao, A review on heat exchanger thermal hydraulic
models for cryogenic applications. Cryogenics, 2011. 51(7): p. 366-379.
[12] Pu, L., Z. Qu, Y. Bai, D. Qi, K. Song, and P. Yi, Thermal performance
analysis of intermediate fluid vaporizer for liquefied natural gas. Applied
Thermal Engineering, 2014. 65(1-2): p. 564-574.
[13] Xu, S., Q. Cheng, L. Zhuang, B. Tang, Q. Ren, and X. Zhang, LNG vaporizers
using various refrigerants as intermediate fluid: Comparison of the required
heat transfer area. Journal of Natural Gas Science and Engineering, 2015. 25:
p. 1-9.
[14] Xu, S., X. Chen, and Z. Fan, Thermal design of intermediate fluid vaporizer
for subcritical liquefied natural gas. Journal of Natural Gas Science and
Engineering, 2016. 32: p. 10-19.
[15] Kim, D.Y., T.H. Sung, and K.C. Kim, Application of metal foam heat
exchangers for a high-performance liquefied natural gas regasification system.
Energy, 2016. 105: p. 57-69.
54

[16] Han, H., Y. Yan, S. Wang, and Y.-X. Li, Thermal design optimization
analysis of an intermediate fluid vaporizer for liquefied natural gas. Applied
Thermal Engineering, 2018. 129: p. 329-337.
[17] Kumar, H., The Plate Heat Exchanger: Construction and Design. First U.K.
National Conference on Heat Transfer 1984: p. 1275–1288.
[18] Iwasaki, M., Asada, K., Intermediate Fluid Type Vaporizer, U.S. Patent,
Editor. 2002.
[19] Yamamoto, S., Ueno, Y., Terada, S., Nakaoki, K., Sugino, K. , Vaporizer for
a low temperature liquid, U.S. Patent, Editor. 2002.
[20] Chen, J.C., Correlation for Boiling Heat Transfer to Saturated Fluids in
Convective Flow. l & EC Process Design and Development, 1966. Vol. 5 No.
3: p. 322-329.
[21] Jung, D., H. Lee, D. Bae, and S. Oho, Condensation heat transfer coefficients
of flammable refrigerants. International Journal of Refrigeration, 2004. 27(4):
p. 314-317.
[22] Longo, G.A. and A. Gasparella, Refrigerant R134a vaporisation heat transfer
and pressure drop inside a small brazed plate heat exchanger. International
Journal of Refrigeration, 2007. 30(5): p. 821-830.
[23] Thome, J.R. and D.M. Robinson, Prediction of Local Bundle Boiling Heat
Transfer Coefficients: Pure Refrigerant Boiling on Plain, Low Fin, and
Turbo-BII HP Tube Bundles. Heat Transfer Engineering, 2006. 27(10): p. 2029.
[24] Cooper, M.G., Heat Flow Rates in Saturated Nucleate Pool Boiling-A WideRanging
Examination Using Reduced Properties.
1984. p. 157-239.
[25] Walraven, D., B. Laenen, and W. D’haeseleer, Comparison of shell-and-tube
with plate heat exchangers for the use in low-temperature organic Rankine
cycles. Energy Conversion and Management, 2014. 87: p. 227-237.
[26] Union, I.G., 2020 World LNG Report. 2020.
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明