博碩士論文 107329002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:18.217.73.187
姓名 藍健華(Jian-Hua Lan)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能
(Modulate the Properties of Magnesium Silicide Thermoelectric Materials with Vanadium Dioxide Nanoparticles)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極
★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響★ 多孔鎳集電層應用於三維微型固態超級電容器
★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池
★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池★ 鑭鍶鈷鐵奈米纖維/銀顆粒複合陰極應用於質子傳輸型陶瓷電化學電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 考量到低成本與環保等優點,本研究選擇了價格低廉且無毒之矽與鎂二元素化合所得矽化鎂(Mg2Si)。鉍的摻雜已被證明有助於提升純矽化鎂之低電導率並且降低熱導率,然而鉍摻雜有其溶解度限制,超過其溶解度便會析出鉍化鎂(Mg3Bi2)。若以上述為基礎並引入奈米結構,例如奈米析出物或奈米複合物,利用增加之大量界面對聲子的散射,能進一步降低熱導率。
文獻中常見的奈米複合物多為氧化物,如二氧化矽(SiO2)、二氧化鈦(TiO2)等,而二氧化釩(VO2)經研究指出,其具有68 ℃時金屬-絕緣體相轉變(MIT)的特性,且金屬相二氧化釩具有電導率大幅增加、熱導率卻幾乎不變的優勢。因此本研究嘗試利用二氧化釩作為奈米複合物加入矽化鎂,添加不同比例之二氧化釩奈米粒子,進一步降低其熱導率,而有效提升整體熱電優值(ZT)。
本研究以矽、鎂、鉍三種粉末原料依比例秤重混和,使用管型爐在氬氣氣氛下進行固相反應,製備鉍摻雜矽化鎂化合物(Mg2SiBi0.02)。而二氧化釩粉末需經過行星式球磨細化,再依比例秤重經滾動式研磨機充分混合,隨後再研磨至粒徑小於44 µm後進行火花電漿燒結(SPS)。
試片量測的部分以X光繞射分析(XRD)和掃描式電子顯微鏡(SEM)測量並觀察完整試片的組成和微觀結構。利用雷射閃光法熱傳導分析儀(LFA)、阿基米德、ZEM-3和高溫示差掃描熱分析儀(DSC)研究熱電性能,獲得包括熱擴散係數、電導率和Seebeck 係數等參數,經過計算以獲得最終的熱導率和ZT值。本研究在二氧化釩加入3%的部分,擁有常溫下熱電優值ZT = 0.086,已接近未添加之2倍。最終目標是製造高ZT值的矽化鎂化合物,以作為具有高性能轉換效率的熱電材料應用。
摘要(英) In this study, magnesium silicide (Mg2Si) synthesized from low-cost, non-toxic silicon and magnesium was selected. The doping of Bi has been proven to increase the conductivity of pure magnesium silicide and reduce the thermal conductivity. However, doping of Bi has its solubility limit, and magnesium bismuthide (Mg3Bi2) will be precipitated if the solubility is exceeded. Adding nanostructures, such as nanoprecipitation or nanocomposite, to the above powders can further reduce thermal conductivity by increasing phonon scattering on the interface.
The common nanocomposites in the literature are mostly oxides, such as silicon dioxide (SiO2) and titanium dioxide (TiO2). Vanadium dioxide (VO2) has been studied and pointed out that it has the characteristics of metal-insulator phase transition (MIT) at 68 ℃. Metallic vanadium dioxide has the advantage that the electrical conductivity is greatly increased, but the thermal conductivity is almost unchanged. Therefore, in this work, we tried to use vanadium dioxide as nanocomposite and mixed with magnesium silicide. The addition of vanadium dioxide nanoparticle in different proportions will further reduce its thermal conductivity and effectively increase the figure of merit(ZT).
Bi-doped magnesium silicide compounds(Mg2SiBi0.02) were prepared by solid state reaction in tube furnace under argon atmosphere after mixing starting materials with the rolling machine. The vanadium dioxide powder needs to be refined by planetary ball milling. The vanadium dioxide and magnesium silicide powders are weighed in proportions and mixed with the rolling machine. Spark plasma sintering (SPS) was later operated after grinding and sieving for densification.
The composition and microstructure of the sample were measured and observed by using X-ray diffraction and SEM, respectively. The thermoelectric properties were studied by Laser flash apparatus (LFA), Archimedes, ZEM-3, and Differential scanning calorimetry (DSC) to obtain the parameter including thermal conductivity, electrical conductivity, and Seebeck coefficient in order to get the figure of merit(ZT).
The final result of this study is that the addition of 3% vanadium dioxide has the highest thermoelectric performance ZT = 0.0857 at room temperature, which is twice that without addition.. The final goal is to manufacture magnesium silicide compounds with high ZT values as thermoelectric materials with high-performance conversion efficiency.
關鍵字(中) ★ 矽化鎂化合物
★ 熱電性質
★ 二氧化釩
★ 火花電漿燒結
關鍵字(英) ★ Magnesium silicide
★ Thermoelectric propertie
★ Vanadium dioxide
★ Spark plasma sintering
論文目次 目錄
摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
第一章、緒論 1
1-1前言 1
1-2熱電效應概述 2
1-3研究動機 4
第二章、文獻回顧 6
2-1 鎂基熱電材料特性 6
2-1-1 鎂基熱電材料之熱電性質 7
2-1-2 矽化鎂化合物之晶體結構 8
2-1-3 矽化鎂之晶格缺陷 9
2-1-4 矽化鎂熱電材料發展 10
2-1-5 威德曼-弗朗兹定律(Wiedemann-Franz law, W-F law) 10
2-2 熱電材料之熱電性質改良 11
2-2-2 摻雜效應 11
2-2-3 奈米結構效應 13
2-3 二氧化釩材料之性質與晶體結構 16
2-3-1 二氧化釩材料之特性及應用 16
2-3-2 二氧化釩材料之晶體結構種類 19
第三章、實驗程序與方法 21
3-1 鉍摻雜矽化鎂粉末製備 22
3-1-1 起始原料(Starting material) 22
3-1-2 固態反應法(Solid state reaction) 22
3-1-3 研磨與過篩(Pulverized) 23
3-1-4 二氧化釩奈米粉末球磨製備 23
3-1-5 火花電漿燒結成型(Spark plasma sintering, SPS) 24
3-2材料結構分析 25
3-2-1 X光繞射分析(XRD) 25
3-2-2掃描式電子顯微鏡分析(SEM) 26
3-3 熱電性質分析 27
3-3-1 樣品製備 27
3-3-2 Seebeck係數與電導率量測 28
3-3-3 熱導率量測 29
第四章、實驗結果與討論 33
4-1 材料基本性質分析 33
4-1-1 XRD分析 33
4-1-2 掃描式電子顯微鏡分析(SEM) 36
4-2 熱電性質分析 38
4-2-1 熱導率 38
4-2-2 載子濃度、遷移率、電導率 41
4-2-3 Seebeck係數與熱電優值(ZT) 42
第五章、結論 44
參考文獻 45
圖目錄
圖1.1 席貝克效應應用於溫差發電與帕爾帖效應應用於致冷示意圖[1] 2
圖1.2 材料中自由載子濃度與電導率、席貝克係數與熱導率關係[2] 3


圖2.1 (a)FCC晶體在倒晶格中之第一布里淵區(b)鎂基化合物Mg2X (X = Si, Ge, Sn)之簡單能帶結構,其中V、CL、CH分別代表價帶、輕導帶、重導帶[7,14] 6
圖2.2 近幾年N型和P型鎂基熱電材料ZT值之整理[7] 7
圖2.3 矽化鎂材料之晶體結構[15] 8
圖2.4 矽化鎂之二元相圖[16] 8
圖2.5 常規N型摻雜物和共振能階對導帶影響的示意圖[7] 12
圖2.6 可能引起能量過濾效應和聲子散射的晶界、 13
圖2.7 導體、半導體及絕緣體的能帶示意圖[27] 14
圖2.8 能量過濾效應機制示意圖[28] 15
圖2.9 Mg2Si與具有Si奈米析出物的Mg63.3Si36.7晶格熱導率[31] 16
圖2.10 VO2於相變化溫度前後之能階軌域變化之能帶關係[33] 17
圖2.11 VO2於相變化溫度前後之鍵結長度變化[34] 17
圖2.12 VO2在金屬-絕緣體相轉變(MIT)過程中的熱導率及電導率變化[3] 18


圖3.1 實驗流程 21
圖3.2 滾動式研磨機 22
圖3.3 高溫管式反應爐 22
圖3.4 高能量行星式球磨機 23
圖3.5 火花電漿燒結(SPS)儀器 24
圖3.6 X光粉末繞射儀 25
圖3.7 布拉格定律示意圖 26
圖3.8 掃描式電子顯微鏡 27
圖3.9 精密慢速切割機 27
圖3.10 熱電塊材電性量測設備(ZEM-3)(a)設備全貌(b)細部構造 28
圖3.12 霍爾效應量測儀器(a)全貌以及(b)試片載台 29
圖3.13 示差掃描熱分析儀 30
圖3.14 雷射閃光法熱傳導分析儀 31
圖3.15 阿基米德密度量測裝置 32

圖4.1 鎂過量5 mole%之Mg2SiBi0.02粉末XRD圖譜 34
圖4.2 添加不同wt% VO2奈米粉末之矽化鎂燒結後之塊材XRD圖譜 35
圖4.3 添加不同wt% VO2奈米粉末之矽化鎂燒結後之塊材XRD區間放大圖 35
圖4.4 經SPS後以5KX倍率觀察添加不同wt%之矽化鎂之背向散射電子影像,其中圖(a)、(b)、(c)、 (d)分別為0 wt%、1 wt%、2 wt%、3 wt% 36
圖4.5以更高的10KX、20KX倍率觀察添加不同wt%之矽化鎂之背向散射電子影像,其中圖(a)、(d)為1 wt%,(b)、(e)為2 wt%,(c)、(f)為3 wt% 37
圖4.6 經SPS後之矽化鎂之能量色散能譜儀素像(mapping) 37
圖4.7 添加3 wt%VO2之矽化鎂經SPS後之能量色散能譜儀素像(mapping) 38
圖4.8 各試片之熱擴散係數比較圖 40
圖4.9 各試片之比熱比較圖 40
圖4.10 各試片之熱導率比較圖 41



表目錄
表2.1 鎂基二元化合物體系之相關電性與物理性質[7] 7
表2.2 以PW91及PBE法計算出的矽化鎂中不同類型點缺陷之生成能[9] 10
表2.3選定的Mg2Si基材料在27 ℃和122 ℃下的載子濃度與遷移率[5] 16
表2.4 不同晶體結構VO2之比較[35] 20

表4.1 各試片利用阿基米德法得到之密度 38
表4. 2 常溫下各試片之晶格熱導率 41
表4.3 各試片進行霍爾效應量測得到之載子濃度、遷移率以及電導率 42
表4.4常溫下鉍摻雜之矽化鎂之Seebeck係數比較表 42
表4.5常溫下各試片之ZT值比較表 42
參考文獻 [1] Bigbear : 奈米材料熱電研發。2013年5月8號,取自https://blog.xuite.net/bigbearpan/twblog/157053951。
[2] Ali Shakouri, “Recent Developments in Semiconductor Thermoelectric Physics and Materials”, Annual Review of Materials Research, Vol. 41, pp.399-431, 2011.
[3] Sangwook Lee, Kedar Hippalgaonkar, Fan Yang, Jiawang Hong, Changhyun K, Joonki Suh, Kai Liu, Kevin Wang, Jeffrey J. Urban, Xiang Zhang, Chris Dames, Sean A. Hartnoll, Olivier Delaire, Junqiao Wu, “Anomalously low electronic thermal conductivity in metallic vanadium dioxide”, Science, 355, 6323, 371–374, 2017.
[4] Dehua Zhang, Wenhao Fan, Feng Zhang, Shaoping Chen, Qingsen Meng, “Preparation and thermoelectric characteristics of SiO2/Mg2Si0.8Sn0.2 bulk”, Advanced Materials Research, Vols 415-417, pp.47-51, 2012.
[5] D. Cederkrantz, N. Farahi, K. A. Borup, B. B. Iversen, M. Nygren, “Enhanced thermoelectric properties of Mg2Si by addition of TiO2 nanoparticles”, Journal of Applied Physics, Vols 111, 2012.
[6] Zhen Xiong, Xihong Chen, Xueying Zhao, Shengqiang Bai, Xiangyang Huang, Lidong Chen, “Effects of nano-TiO2 dispersion on the thermoelectric properties of filled-skutterudite Ba0.22Co4Sb12”, Solid State Sciences, Vols 11, pp.1612-1616, 2009.
[7] Rafael Santos, Sima Aminorroaya Yamini, Shi Xue Dou, “Recent progress in magnesium-based thermoelectric materials”, Journal of Materials Chemistry A, 6, 3328-3341, 2018.
[8] Fanchen Meng, Songsong Sun, Jinlong Ma, Charles Chronister, Jian He, Wu Li, “Anisotropic thermoelectric figure-of-merit in Mg3Sb2”, Materials Today Physics, 2542-5293, 2020.
[9] Philippe Jund, Romain Viennois, Catherine Colinet, Gilles Hug, Mathieu F`ever, Jean-Claude T´edenac, “Lattice stability and formation energies of intrinsic defects in Mg2Si and Mg2Ge via first principles simulations”, Journal of Physics: Condensed Matter, 25,035403, 2013.
[10] M. Kubouchi, K. Hayashi, Y.Miyazaki, “Electronic structure and thermoelectric properties of Boron doped Mg2Si”, Scripta Materialia, 1359-6462, 2016.
[11] H.L. Gao, T.J. Zhu, X.B. Zhao, Y. Deng, “Influence of Sb doping on thermoelectric properties of Mg2Ge materials”, Intermetallics, 56, 33-36, 2015.
[12] V.K.Zaitsev, M.I.Fedorov, E.A.Gurieva, I.S.Eremin, P.P.Konstantinov, A.Yu.Samunin, M.V.Vedernikov, “Thermoelectrics of n-type With ZT > 1 Based on Mg2Si-Mg2Sn Solid Solutions”, International Conference on Thermoelectrics, 2005.
[13] Wei Liu, Xiaojian Tan, Kang Yin, Huijun Liu, Xinfeng Tang, Jing Shi, Jing Shi, Jing Shi, “Convergence of Conduction Bands as a Means of Enhancing Thermoelectric Performance of n-Type Mg2Si1-xSnx Solid Solutions”, Physical Review Letters, 108, 166601, 2012.
[14] K. Kutorasinski, B. Wiendlocha, J.Tobola, S. Kaprzyk, “Importance of relativistic effects in electronic structure and thermopower calculations for Mg2Si, Mg2Ge, and Mg2Sn”, Physical Review B, 89, 115205, 2014.
[15] Xin Zhang, Qing-Mei Lu, Lei Wang, Fei-Peng Zhang, Jiu-Xing Zhang, “Preparation Of Mg2Si1-XSnx by Induction Melting and Spark Plasma Sintering, And Thermoelectric Properties”, Journal of electronic materials, Vol. 39, No. 9, 2010.
[16] 唐仁政,田榮璋,二元合金相圖及中間相晶體結構,一版,中南大學出版社,長沙市,2009年。
[17] Masayasu Akasaka, Tsutomu Iida, Atsunobu Matsumoto, Kohei Yamanaka, Yoshifumi Takanashi, Tomohiro Imai , Noriaki Hamada, “The thermoelectric properties of bulk crystalline n- and p-type Mg2Si prepared by the vertical Bridgman method”, Journal of Applied Physics, 104, 013703, 2008.
[18] George S. Polymeris, Nikolaos Vlachos, Elli Symeou, Theodora Kyratsi, “Thermoelectric Properties of Bi-Doped Mg2Si0.6Sn0.4 Solid Solutions Synthesized by Two-Step Low Temperature Reaction Combined with Hot Pressing”, Phys. Status Solidi A, 1800136, 2018.
[19] Gwansik Kim, Hwijong Lee, Jeongmin Kim, JongWook Roh, Inwoong Lyo, Byung-Wook Kim, Kyu Hyoung Lee, Wooyoung Lee, “Up-scaled solid state reaction for synthesis of doped Mg2Si”, Scripta Materialia, 128, 53-56, 2017.
[20] Terry M. Tritt, “Thermoelectric Phenomena, Materials, and Applications”, Annual Review of Materials Research, Vol.41, 433-448, 2011.
[21] Babak Alinejad, Yoshiki Takagiwa, Teruyuki Ikeda, “Activated Reactive Consolidation Method as a New Approach to Enhanced Thermoelectric Properties of n‑Type Nanostructured Mg2Si”, Acs Applied Energy Materials, 3, 5, 4457-4465, 2020
[22] Yinglu Tang, Zachary M. Gibbs, Luis A. Agapito, Guodong Li, Hyun-Sik Kim, Marco Buongiorno Nardelli, Stefano Curtarolo, G. Je_rey Snyder, “Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites”, Nature Materials, 14, 1223-1228, 2015.
[23] J. Bourgeois, J. Tobola And B. Wiendlocha, L. Chaput, P. Zwolenski, D. Berthebaud, F. Gascoin, Q. Recour, H. Scherrer, “Study of electron, phonon and crystal stability versus thermoelectric properties in Mg2X (X = Si, Sn) compounds and their alloys”, Functional Materials Letters, Vol. 6, No. 5, 1340005, 2013.
[24] Dario Narducci, Ekaterina Selezneva, Gianfranco Cerofolini, Stefano Frabboni, Giampiero Ottaviani, “Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors”, Journal of Solid State Chemistry, 193, 19-28, 2012.
[25] Swapnil Ghodke, Akio Yamamoto, Hsuan-Chun Hu, Shunsuke Nishino, Takuya Matsunaga, Dogyun Byeon, Hiroshi Ikuta, Tsunehiro Takeuchi, “Improved Thermoelectric Properties of Re-Substituted Higher Manganese Silicides by Inducing Phonon Scattering and an Energy Filtering Effect at Grain Boundary Interfaces”, ACS Applied materials & interfaces, 11, 31169-31175, 2019.
[26] N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, A. Shakouri, “Nanoparticle-in-Alloy Approach to Efficient Thermoelectrics: Silicides in SiGe”, Nano letters, Vol. 9, No. 2, 711-715, 2009.
[27] Neelima Mahato, Mohd. Omaish Ansari, Moo Hwan Cho, “Production of utilizable energy from renewable resources: mechanism, machinery and effect on environment”, Advanced materials research, Vol. 1116, pp 1-32, 2015.
[28] Pankaj Kumar Rawat, Bernhard J Paul,Pallab Banerji, “Lead telluride based thermoelectrics : approaches for higher efficiency”, Materials and processes for energy: communicating current research and technological developments, 2013.
[29] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, G. Chen, “Bulk nanostructured thermoelectric materials current research and future prospects”, Energy & Environmental Science, 2, 466-479, 2009.
[30] Nikhil Satyala, Daryoosh Vashaee, “Detrimental influence of nanostructuring on the thermoelectric properties of magnesium silicide”, Journal of Applied Physics, 112, 093716, 2012.
[31] Teruyuki Ikeda, Laura Haviez, Youli Li, G. Jeffrey Snyder, “Nanostructuring of Thermoelectric Mg2Si via a Nonequilibrium Intermediate State”, SMALL, Vol. 8, No.15, 2350-2355, 2012.
[32] Nader Farahi, Sagar Prabhudev, Matthieu Bugnet, Gianluigi A. Botton, James R. Salvador, And Holger Kleinke, “Effect of Silicon Carbide Nanoparticles on the Grain Boundary Segregation and Thermoelectric Properties of Bismuth Doped Mg2Si0.7Ge0.3”, The Minerals, Metals & Materials Society, 45, 6052-6058, 2016.
[33] F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature”, Physical Review Letters, Vol. 3, No. 1, 34-36, 1959.
[34] Yue Wang, Xuekui Xi, Zefang Li, Enke Liu, Yao Yu, YueWu, Guangheng Wu and Wenhong Wang, “Dynamic signature of orbital selective Mott transition in the metallic phase of VO2”, New Journal of Physics, Vol. 20, 073026, 2018.
[35] Ch. Leroux, G. Nihoul, “From VO2(B) to VO2(R): Theoretical structures of VO2 polymorphs and in situ electron microscopy”, The American Physical Society, 57, 5111, 1998.
[36] D. A. Ditmars, S. lshihara, S. S. Chang, G. Bernstein, “Enthalpy and heat-capacity standard reference material: synthetic sapphire (α-Al2O3) from 10 to 2250 K”, Journal of research of the national Bureau of Standards, Vol.87, No.2, March-April, 1982.
[37] Andrzej Kolezynski, Pawel Nieroda, Piotr Jelen, Maciej Sitarz, Krzysztof T. Wojciechowski, “Theoretical and experimental spectroscopic studies of Bi dopant location in Mg2Si”, Vibrational Spectroscopy, Vol.76, 31-37, 2015.
[38] G. Guizzetti, F. Marabelli, “Optical and electrical characteration of VSi2 and NbSi2 single crystals”, Applied Surface Science, Vol. 73, 237-242, 1993.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2020-11-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明