博碩士論文 107329019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.147.73.35
姓名 陳柏宇(Bo-Yu Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
(The effects of addition of ethylene carbonate in succinonitrile-based electrolyte on the performance of Li-ion batteries)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 多孔鎳集電層應用於三維微型固態超級電容器
★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池
★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池★ 鑭鍶鈷鐵奈米纖維/銀顆粒複合陰極應用於質子傳輸型陶瓷電化學電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究將不同體積百分比(10, 20, 30 %(v/v) )之碳酸乙烯酯添加至含有六氟磷酸鋰之丁二腈溶液以配置成0.3 M六氟磷酸鋰溶液,並從化學穩定性、電化學阻抗圖譜、充放電及界面穩定性測試去分析添加碳酸乙烯酯對丁二腈電解質之影響。從化學穩定性可得知添加碳酸乙烯酯有助於抑制丁二腈與鋰金屬反應。從電化學阻抗圖譜可得知當添加30 %(v/v)之碳酸乙烯酯,其電解質於室溫下具有2.3810-3 S cm-1之離子傳導率。從充放電測試可得知磷酸鋰鐵/添加30 %(v/v)碳酸乙烯酯之電解質/鋰金屬半電池於0.1 C具有約143 mAh g-1之放電電容值,此電容值為理論電容值(170 mAh g-1)之84 %。於界面穩定性測試,當以0.1 mA/cm2電流密度進行充放電時,添加30 %(v/v)碳酸乙烯酯之電解質其電池能於穩定之電壓範圍進行充放電,因此推論於此添加量,碳酸乙烯酯能與鋰金屬反應生成較穩定之固態電解質界面。
摘要(英) In this research, different volume percentage (10, 20, 30 %(v/v) ) of ethylene carbonate is added into succinonitrile mixed with lithium hexafluorophosphate to form 0.3 M lithium hexafluorophosphate solution. By using chemical stability test, electrochemical impedance spectroscopy, charge and discharge test, and interface stability test, we can analyze the effect of the addition of ethylene carbonate in succinonitrile-based electrolyte on the Li-ion batteries. The chemical stability tests show that the addition of ethylene carbonate can inhibit the interfacial reaction of lithium metal and succinonitrile. Based on the results of electrochemical impedance spectroscopy, the electrolyte possesses the ion conductivity of 2.3810-3 S cm-1 at room temperature when 30 %(v/v) amount of ethylene carbonate is added. The charge and discharge tests also indicate that lithium iron phosphate/30 %(v/v) ethylene carbonate in succinonitrile-based electrolyte/lithium metal half cell shows the discharge capacity of 143 mAh g-1, which is 84 % of the theoretical capacity (170 mAh g-1). Interface stability test indicates that when 30 %(v/v) amount of ethylene carbonate is added, the battery can charge and discharge at the stable voltage range, it can be concluded that the stable solid electrolyte interface forms between electrolyte and lithium metal.
關鍵字(中) ★ 丁二腈
★ 電解質
★ 碳酸乙烯酯
★ 鋰離子電池
關鍵字(英) ★ succinonitrile
★ electrolyte
★ ethylene carbonate
★ Li-ion batteries
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 電池發展與介紹 1
1.2.1 一次電池 1
1.2.2 二次電池 2
1.3 鋰離子二次電池 2
1.3.1 鋰離子二次電池之工作原理 3
1.4 電解質 4
1.4.1 液態電解質 6
1.5 丁二腈 8
1.6 研究動機與目的 9
第二章 實驗步驟與儀器原理 10
2.1 實驗藥品 10
2.2 實驗步驟 11
2.2.1 碳酸乙烯酯/六氟磷酸鋰/丁二腈之溶液配置 11
2.2.2 磷酸鋰鐵正極片之製備 11
2.2.3 CR2032鈕扣電池之封裝 14
2.3 實驗儀器 15
2.3.1 電化學阻抗圖譜 (Electrochemical Impedance Spectroscopy) 15
2.3.2 線性掃描伏安法 16
2.3.3 充放電測試 (Charge and discharge test) 16
2.3.4 界面穩定性測試 (Interface stability test) 17
第三章 結果與討論 18
3.1 化學穩定性測試 18
3.2 添加碳酸乙烯酯對室溫下溶液之狀態影響 19
3.3 交流阻抗分析 19
3.4 工作電位窗分析 21
3.5 界面穩定性測試 22
3.6 充放電測試 23
第四章 結論 26
參考文獻 27
參考文獻 [1] C. Isitan, Q. Yan, C. F. Benjamin, D. D. Spencer, R. Alkawadri, “A brief history of electrical cortical stimulation: A journey in time from volta to penfield,” Epilepsy Research, pp. 106-363, 2020.
[2] M. Winter, B. Barnett, K. Xu, “Before Li ion batteries,” Chemical reviews, Vol. 118, no. 23, pp. 11433-11456, 2018.
[3] M. S. Whittingham, “Electrical energy storage and intercalation chemistry,” Science, Vol. 192, no. 4244, pp. 1126-1127, 1976.
[4] M. Zanini, F. Je, “Alternate synthesis and reflectivity spectrum of stage 1 lithium-graphite intercalation compound,” Carbon, Vol. 16, pp. 211-212, 1978.
[5] K. Mizushima, P. Jones, P. Wiseman, J. B. Goodenough, “LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density,” Materials Research Bulletin, Vol. 15, no. 6, pp. 783-789, 1980.
[6] D. Deng, “Li‐ion batteries: Basics, progress, and challenges,” Energy Science & Engineering, Vol. 3, no. 5, pp. 385-418, 2015.
[7] C. Liu, R. Massé, X. Nan, G. Cao, “A promising cathode for Li-ion batteries: Li3V2(PO4)3,” Energy Storage Materials, Vol. 4, pp. 15-58, 2016.
[8] K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, “Materials for lithium-ion battery safety,” Science advances, Vol. 4, no. 6, pp. eaas9820, 2018.
[9] J. Dahn, E. Fuller, M. Obrovac, U. Von Sacken, “Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells,” Solid State Ionics, Vol. 69, no. 3-4, pp. 265-270, 1994.
[10] K. Xu, “Nonaqueous liquid electrolytes for lithium-based rechargeable batteries,” Chemical reviews, Vol. 104, no. 10, pp. 4303-4418, 2004.
[11] V. Aravindan, J. Gnanaraj, S. Madhavi, H. K. Liu, “Lithium‐ion conducting electrolyte salts for lithium batteries,” Chemistry–A European Journal, Vol. 17, no. 51, pp. 14326-14346, 2011.
[12] S. E. Sloop, J. B. Kerr, K. Kinoshita, “The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge,” Journal of power sources, Vol. 119, pp. 330-337, 2003.
[13] R. Chen, F. Liu, Y. Chen, Y. Ye, Y. Huang, F. Wu, L. Li, “An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries,” Journal of Power Sources, Vol. 306, pp. 70-77, 2016.
[14] P. Derollez, J. Lefebvre, M. Descamps, W. Press, H. Fontaine, “Structure of succinonitrile in its plastic phase,” Journal of Physics: Condensed Matter, Vol. 2, no. 33, pp. 6893, 1990.
[15] P. J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, M. Armand, “The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors,” Nature materials, Vol. 3, no. 7, pp. 476-481, 2004.
[16] M. B. Effat, Z. Lu, A. Belotti, J. Yu, Y. Q. Lyu, F. Ciucci, “Towards succinonitrile-based lithium metal batteries with long cycle life: The influence of fluoroethylene carbonate loading and the separator,” Journal of Power Sources, Vol. 436, pp. 226802, 2019.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2021-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明