博碩士論文 107329020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:18.118.142.230
姓名 符禎元(chen-yuan Fu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 LSAM 混和 LSGM 及其 Cr、 Zn 摻雜作為固態氧化物燃料電池電解質之可行性研究
(Mixing of LSAM with LSGM doped with Cr and Zn as a feasible electrolyte of solid oxide fuel cells)
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究
★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析
★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究
★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究
★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究
★ 銅鎳合金微結構之微電鍍研究★ 以微電鍍法製備三維銅錫介金屬化合物微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 本論文在以低廉之鑭鍶鋁鎂(LSAM)氧化物和鑭鍶鎵鎂(LSGM)氧化物互相混合,製作LSGM-LSAM混和,探討其作為固態氧化物燃料電池電解質之可行性。首先依溶膠凝膠法來製備La0.8Sr0.2Ga0.8Mg0.2O3 (LSGM)與La0.9Sr0.1Al0.9Mg0.1O3 (LSAM)兩種粉末,再分別以0、25、50、75及100 wt.%等不同之比例將LSAM粉末與LSGM互相混和,燒結後探討此混和材料之結晶結構、形貌、導電率。隨後,將混合粉末製作固態氧化物燃料電池,進行測試。結果顯示:含25 wt.% LSAM之混和電解質,其電池功率密度約為純LSGM電解質電池之91%。
  上述含25 wt.% LSAM之混和電解質,分別摻雜1.0 mol % Cr與1.0 mol % Zn元素,在800 oC下量測離子導電率結果顯示:摻雜Cr電解質之離子導電率下降(0.038 S/cm < 0.073 S/cm),且導電活化能降低(1.37eV < 1.56 eV);摻雜Zn電解質之離子導電率增高(0.088 S/cm > 0.073 S/cm),導電活化能降低(1.35eV < 1.56 eV)。摻雜Cr電解質之熱膨脹係數為12.6×10-6/K;摻雜Zn電解質則為22.2×10-6/K,後者與陰極之膨脹係數(20.6×10-6/K)匹配度較高。隨後,製作陽極支撐型SOFC電池,經800 oC量測電池功率,結果顯示:摻1.0 mol % Zn含25 wt.% LSAM混和電解質之電池,其功率較高(173.6 mW/cm2 > 124.6 mW/cm2)。經濟性評估顯示:摻雜1.0 mol % Zn含25 wt.% LSAM混和電解質製作之SOFC,電池功率並不比純LSGM電池遜色,但成本降低約23.7%,,預期具有取代純LSGM電解質製作固態氧化物燃料電池之潛力,創造更高之經濟效益。
摘要(英) In this study, low-cost lanthanum strontium aluminum magnesium (LSAM) oxide and lanthanum strontium gallium magnesium (LSGM) oxide are mixed with each other to make LSGM-LSAM composite, and explore its feasibility as a solid oxide fuel cell electrolyte. First, prepare La0.8Sr0.2Ga0.8Mg0.2O3 (LSGM) and La0.9Sr0.1Al0.9Mg0.1O3 (LSAM) powders by the sol-gel method, and then mix the LSAM powder and LSGM in different ratio (0, 25, 50, 75 and 100 wt.%), and discuss the crystal structure, morphology, and conductivity of the mixed material after sintering. Subsequently, the mixed powder was made into a solid oxide fuel cell for testing. The results show that the power density of the mixed electrolyte containing 25 wt.% LSAM is about 91% of that of the pure LSGM electrolyte support cell.
The above-mentioned mixed electrolyte containing 25 wt.% LSAM was doped with 1.0 mol% Cr and 1.0 mol% Zn respectively. The ion conductivity measured at 800 oC showed that the ionic conductivity of the doped Cr electrolyte decreased (0.038 S/ cm <0.073 S/cm), and the activation energy of conduction decreases (1.37eV <1.56 eV); the ionic conductivity of doped Zn electrolyte increases (0.088 S/cm> 0.073 S/cm), and the activation energy of conduction decreases (1.35eV < 1.56 eV). The thermal expansion coefficient of the doped Cr electrolyte is 12.6×10-6/K; the doped Zn electrolyte is 22.2×10-6/K, and the latter was more suitable with the expansion coefficient of the cathode (20.6×10-6/K). Subsequently, an SOFC anode-supported cell was fabricated, and the power density was measured at 800 oC. The results showed that: doped with 1.0 mol% Zn and 25 wt.% LSAM mixed electrolyte has a higher power (173.6 mW/cm2> 124.6 mW/cm2 ). Economic evaluation shows that: SOFC doped with 1.0 mol% Zn and 25 wt.% LSAM mixed electrolyte, power density is not inferior to pure LSGM cell, but the cost is reduced by about 23.7%, and it is expected to replace pure LSGM electrolyte to produce solid oxide The potential of fuel cells creates higher economic benefits.
關鍵字(中) ★ 固態氧化物燃料電池
★ 溶膠凝膠法
★ LSGM電解質材料
★ LSAM電解質材料
★ 過渡元素摻雜
★ Cr摻雜
★ Zn摻雜
關鍵字(英) ★ solid oxide fuel cell (SOFC)
★ sol-gel method
★ LSGM electrolyte material
★ LSAM electrolyte material
★ transition element doping
★ Cr doping
★ Zn doping
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 ix
圖目錄 xi
一、 緒論 1
1-1簡介 1
1-2研究動機與目的 2
二、 實驗原理與文獻回顧 4
2-1固態氧化物燃料電池 5
2-1-1固態氧化物燃料電池原理與簡介 5
2-1-2固態氧化物燃料電池類型 5
2-1-3固態氧化物電池元件 7
2-2電解質元件 9
2-2-1電解質傳導機制 9
2-2-2電解質晶體結構 10
2-2-3電解質材料製備方式 14
2-3電化學分析原理 15
2-3-1直流電極化曲線(I-V Curve)原理 16
2-3-2電化學交流阻抗頻譜(EIS)原理 18
2-4文獻回顧 20
三、 實驗方法 24
3-1整體實驗架構及實驗原料 24
3-2粉末配置 24
3-2-1LSGM 24
3-2-2LSAM 25
3-2-3粉末混和 25
3-2-4 Cr、Zn的摻雜 25
3-3圓錠樣品製備 26
3-3-1小錠 26
3-3-2大錠 26
3-4電池製備 26
3-4-1電解質支撐型電池製備 26
3-4-2陽極支撐型電池製備 27
3-5分析設備 28
3-5-1 X光晶體繞射儀器 28
3-5-2掃描式電子顯微鏡 29
3-5-3導電率量測 29
3-5-4直流極化曲線測試平台 30
3-5-5電化學交流阻抗頻譜儀 30
四、 結果 31
4-1 X光晶體繞射分析 31
4-1-1LSGM之X光繞射圖譜 31
4-1-2LSAM之X光繞射圖譜 31
4-1-3不同混和比例電解質小錠之X光繞射圖譜 32
4-1-4 Cr、Zn元素摻雜之X光繞射圖譜 32
4-2熱膨脹係數分析 32
4-2-1不同混和比例電解質小錠之熱膨脹係數 32
4-2-2 Cr、Zn元素摻雜之熱膨脹係數 33
4-3電解質導電率量測 33
4-3-1不同混和比例電解質小錠之導電率 33
4-3-2 Cr、Zn元素摻雜之導電率 34
4-4直流極化曲線測試分析 34
4-4-1不同混和比例電解質之直流極化曲線 34
4-4-2 Cr、Zn元素摻雜之直流極化曲線 34
4-4-3陽極支撐型電池之直流極化曲線 35
4-5電化學交流阻抗頻譜分析 35
4-5-1不同混和比例電解質之交流阻抗頻譜 35
4-5-2 Cr、Zn元素摻雜之交流阻抗頻譜 36
4-5-3陽極支撐型電池之交流阻抗頻譜 36
4-6掃描式電子顯微鏡之形貌觀察 36
4-6-1不同混和比例電解質之形貌觀察 36
4-6-2 Cr、Zn元素摻雜之形貌觀察 37
4-6-3陽極支撐型電池之形貌觀察 37
五、 討論 38
5-1不同混和比例電解質 38
5-1-1X光晶體繞射分析 38
5-1-2熱膨脹係數分析 38
5-1-3導電率量測 39
5-1-4電池及EIS分析 40
5-2 Cr、Zn元素摻雜 41
5-2-1X光晶體繞射分析 41
5-2-2熱膨脹係數分析 42
5-2-3導電率量測 42
5-2-4電池及EIS分析 43
5-3陽極支撐型電池 44
六、 結論 45
6-1結論 45
6-2未來工作 46
參考文獻 47
參考文獻 1. M. Ehsani, Y. Gao, S. Longo, and K.M. Ebrahimi, Modern electric, hybrid electric, and fuel cell vehicles. CRC press. 2018
2. D. Chuang: 2020 東奧不只是體育賽事,以環保為主軸宛如綠能科技展. 2019, Available from: https://technews.tw/2019/05/22/tokyo-olympics-100-clean-energy-recycled-medal/.
3. H.A. Shabri, M.H.D. Othman, M.A. Mohamed, T.A. Kurniawan, and S.M. Jamil, “Recent progress in metal-ceramic anode of solid oxide fuel cell for direct hydrocarbon fuel utilization: A review”, Fuel Processing Technology. 212: p. 106626, 2021
4. J. Hou, Z. Zhu, J. Qian, and W. Liu, “A new cobalt-free proton-blocking composite cathode La2NiO4+ δ–LaNi0. 6Fe0. 4O3− δ for BaZr0. 1Ce0. 7Y0. 2O3− δ-based solid oxide fuel cells”, Journal of Power Sources. 264: p. 67-75, 2014
5. L. Bi, S. Boulfrad, and E. Traversa, “Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides”, Chemical Society Reviews. 43(24): p. 8255-8270, 2014
6. B.C. Steele and A. Heinzel, Materials for fuel-cell technologies, in Materials for sustainable energy: a collection of peer-reviewed Research and review articles from nature publishing group, World Scientific. p. 224-231, 2011
7. A.B. Stambouli and E. Traversa, “Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy”, Renewable and sustainable energy reviews. 6(5): p. 433-455, 2002
8. M. Morales, J. Roa, J. Tartaj, and M. Segarra, “A review of doped lanthanum gallates as electrolytes for intermediate temperature solid oxides fuel cells: From materials processing to electrical and thermo-mechanical properties”, Journal of the European Ceramic Society. 36(1): p. 1-16, 2016
9. T. Ishihara, H. Matsuda, and Y. Takita, “Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor”, Journal of the American chemical society. 116(9): p. 3801-3803, 1994
10. M. Feng and J. Goodenough, “A superior oxide-ion electrolyte”, European journal of solid state and inorganic chemistry. 31(8-9): p. 663-672, 1994
11. D. Han, X. Liu, F. Zeng, J. Qian, T. Wu, and Z. Zhan, “A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells”, Scientific reports. 2(1): p. 1-5, 2012
12. K. Huang and J.B. Goodenough, “A solid oxide fuel cell based on Sr-and Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer”, Journal of Alloys and Compounds. 303: p. 454-464, 2000
13. F. Wang, Y. Lyu, D. Chu, Z. Jin, G. Zhang, and D. Wang, “The electrolyte materials for SOFCs of low-intermediate temperature”, Materials Science and Technology. 35(13): p. 1551-1562, 2019
14. T.L. Nguyen and M. Dokiya, “Electrical conductivity, thermal expansion and reaction of (La, Sr)(Ga, Mg) O3 and (La, Sr) AlO3 system”, Solid State Ionics. 132(3-4): p. 217-226, 2000
15. J.Y. Park and G.M. Choi, “The effect of Ti addition on the electrical conductivity of Sr-and Mg-doped LaAlO3”, Solid State Ionics. 176(37-38): p. 2807-2812, 2005
16. 鉅亨網資料中心: 歐美貴重&其他金屬價格. 2021, Available from: https://www.cnyes.com/fc/index7priceCashrate.asp?page=2&pagetype=metal&subtype=metal.
17. T. Ishihara, H. Furutani, M. Honda, T. Yamada, T. Shibayama, T. Akbay, N. Sakai, H. Yokokawa, and Y. Takita, “Improved oxide ion conductivity in La0. 8Sr0. 2Ga0. 8Mg0. 2O3 by doping Co”, Chemistry of materials. 11(8): p. 2081-2088, 1999
18. T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi, and Y. Takita, “Intermediate temperature solid oxide fuel cells using LaGaO3 electrolyte II. Improvement of oxide ion conductivity and power density by doping Fe for Ga site of LaGaO3”, Journal of the electrochemical society. 147(4): p. 1332, 2000
19. R. O′hayre, S.-W. Cha, W. Colella, and F.B. Prinz, Fuel cell fundamentals. John Wiley & Sons. 2016
20. 黃鎮江, 燃料電池. 全華圖書 2017
21. 衣寶廉, 燃料電池: 原理與應用. 五南圖書出版股份有限公司. 2005
22. H. Taroco, J. Santos, R. Domingues, and T. Matencio, “Ceramic materials for solid oxide fuel cells”, Advances in ceramics-Synthesis and Characterization, processing and specific applications: p. 423-446, 2011
23. S.C. Singhal and K. Kendall, High-temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier. 2003
24. N.Q. Minh, “Ceramic fuel cells”, Journal of the American Ceramic Society. 76(3): p. 563-588, 1993
25. S.A. Hajimolana, M.A. Hussain, W.a.W. Daud, M. Soroush, and A. Shamiri, “Mathematical modeling of solid oxide fuel cells: A review”, Renewable and Sustainable Energy Reviews. 15(4): p. 1893-1917, 2011
26. N.Q. Minh, “Solid oxide fuel cell technology—features and applications”, Solid State Ionics. 174(1-4): p. 271-277, 2004
27. Y. Lyu, J. Xie, D. Wang, and J. Wang, “Review of cell performance in solid oxide fuel cells”, Journal of Materials Science. 55(17): p. 7184-7207, 2020
28. M. Lee, G. Park, and V. Radisavljevic-Gajic. Modeling of solid oxide fuel cells (SOFCs): An overview, in 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO). IEEE, 2013
29. V. Thangadurai, W.H.H. Kan, B. Mirfakhraei, S. Bhella, and T.T. Trinh, “Materials for proton conducting solid oxide fuel cells (H-SOFCs)”, ECS Transactions. 35(1): p. 483, 2011
30. N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, “Progress in material selection for solid oxide fuel cell technology: A review”, Progress in Materials Science. 72: p. 141-337, 2015
31. T. Etsell and S.N. Flengas, “Electrical properties of solid oxide electrolytes”, Chemical Reviews. 70(3): p. 339-376, 1970
32. J. Hladik, Physics of electrolytes. Vol. 1, Academic Press. 1972
33. M. Subramanian, G. Aravamudan, and G.S. Rao, “Oxide pyrochlores—a review”, Progress in Solid State Chemistry. 15(2): p. 55-143, 1983
34. P. Wilde and C. Catlow, “Molecular dynamics study of the effect of doping and disorder on diffusion in gadolinium zirconate”, Solid State Ionics. 112(3-4): p. 185-195, 1998
35. P. Wilde and C. Catlow, “Defects and diffusion in pyrochlore structured oxides”, Solid State Ionics. 112(3-4): p. 173-183, 1998
36. R. Williford, W. Weber, R. Devanathan, and J. Gale, “Effects of cation disorder on oxygen vacancy migration in Gd 2 Ti 2 O 7”, Journal of electroceramics. 3(4): p. 409-424, 1999
37. S. Kramer and H. Tuller, “A novel titanate-based oxygen ion conductor: Gd2Ti2O7”, Solid State Ionics. 82(1-2): p. 15-23, 1995
38. S. Kramer, M. Spears, and H. Tuller, “Conduction in titanate pyrochlores: role of dopants”, Solid State Ionics. 72: p. 59-66, 1994
39. E. Kendrick, M.S. Islam, and P.R. Slater, “Developing apatites for solid oxide fuel cells: insight into structural, transport and doping properties”, Journal of Materials Chemistry. 17(30), 2007
40. A. Najib, J. Sansom, J. Tolchard, P. Slater, and M. Islam, “Doping strategies to optimise the oxide ion conductivity in apatite-type ionic conductors”, Dalton Transactions,(19): p. 3106-3109, 2004
41. T. Ishihara, Perovskite oxide for solid oxide fuel cells. Springer Science & Business Media. 2009
42. H. Arai, T. Yamada, K. Eguchi, and T. Seiyama, “Catalytic combustion of methane over various perovskite-type oxides”, Applied catalysis. 26: p. 265-276, 1986
43. J. Hirschenhofer, D. Stauffer, R. Engleman, and M. Klett, Fuel Cells: a handbook. Business/Technology Books. 1996
44. S.M. Haile, “Fuel cell materials and components”, Acta materialia. 51(19): p. 5981-6000, 2003
45. E. Povoden-Karadeniz, Thermodynamic database of the La-Sr-Mn-Cr-O oxide system and applications to solid oxide fuel cells. 2008.
46. N.-Y. Hsu, S.-C. Yen, K.-T. Jeng, and C.-C. Chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives”, Journal of power sources. 161(1): p. 232-239, 2006
47. K. Huang and J.B. Goodenough, “Solid oxide fuel cell technology: principles, performance and operations”, 2009
48. E. Baur and H. Preis, “Über Brennstoff‐Ketten mit Festleitern”, Zeitschrift für Elektrochemie und angewandte physikalische Chemie. 43(9): p. 727-732, 1937
49. X. Lu and J. Zhu, “Effect of Sr and Mg Doping on the Property and Performance of the La1− x Sr x Ga1− y Mg y O3− δ Electrolyte”, Journal of the Electrochemical Society. 155(5): p. B494, 2008
50. M. Cherry, M.S. Islam, and C. Catlow, “Oxygen ion migration in perovskite-type oxides”, Journal of Solid State Chemistry. 118(1): p. 125-132, 1995
51. Y. Lin and S.A. Barnett, “Co-firing of anode-supported SOFCs with thin La0. 9Sr0. 1Ga0. 8Mg0. 2O3− δ electrolytes”, Electrochemical And Solid State Letters. 9(6): p. A285, 2006
52. D. Lybye, F.W. Poulsen, and M. Mogensen, “Conductivity of A-and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites”, Solid State Ionics. 128(1-4): p. 91-103, 2000
53. T.-Y. Chen and K.-Z. Fung, “Comparison of dissolution behavior and ionic conduction between Sr and/or Mg doped LaGaO3 and LaAlO3”, Journal of Power Sources. 132(1-2): p. 1-10, 2004
54. D. Xu, X. Liu, D. Wang, G. Yi, Y. Gao, D. Zhang, and W. Su, “Fabrication and characterization of SDC–LSGM composite electrolytes material in IT-SOFCs”, Journal of alloys and compounds. 429(1-2): p. 292-295, 2007
55. L. Sebastian, A. Shukla, and J. Gopalakrishnan, “La 0.9 Sr 0.1 Ga 0.8 M 0.2 O 3-δ (M= Mn, Co, Ni, Cu or Zn): Transition metal-substituted derivatives of lanthanum-strontium-galliummagnesium (LSGM) perovskite oxide ion conductor”, Bulletin of Materials Science. 23(3): p. 169-173, 2000
56. 化學自習室: 原子(離子)半徑週期表. 2021, Available from: https://www.hxzxs.cn/view-6382-1.html.
57. B. Khorkounov, H. Näfe, and F. Aldinger, “Relationship between the ionic and electronic partial conductivities of co-doped LSGM ceramics from oxygen partial pressure dependence of the total conductivity”, Journal of Solid State Electrochemistry. 10(7): p. 479-487, 2006
58. J.G. Speight, Lange′s handbook of chemistry. McGraw-Hill Education. 2017
指導教授 林景崎(jing-chie Lin) 審核日期 2021-10-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明