博碩士論文 107353028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.136.154.103
姓名 郭先杰(HSIEN-CHIEH KUO)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 電泳沉積輔助拋光於SUJ2軸承鋼加工特性之研究
(A study on SUJ2 bearing steel mirror surface polishing using the electrophoretic deposition method)
相關論文
★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究★ 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究
★ 超音波輔助液中磨削鐵基金屬玻璃之研究★ 脈衝複合偏壓電化學放電加工石英晶圓之研究
★ 超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究★ 超音波輔助電化學留心加工矩槽圓柱構造之研究
★ 快速塑性成型(QPF)製程的精準度探討★ 利用灰色關聯分析法探究線切割放電於SKD61加工之最佳化參數
★ 超音波輔助微電化學鑽孔鎳基合金加工研究★ 超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究
★ Inconel 718 鎳基超合金異形電極微孔放電加工之研究★ 實驗分析研究應用於減低數據中心伺服器硬碟之結構傳遞振動
★ 超音波輔助電化學加工微孔陣列之研究★ 超音波輔助磨削AGC玻璃加工之研究
★ Inconel718鎳基超合金添加石墨烯粉末 微孔放電加工之研究★ 高功率超音波振動輔助線切割放電加工SKD61材料之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究是運用電泳沉積輔助SiC磨粒對SUJ2軸承鋼進行表面拋光,並輔以電泳沉積改善拋光輪所能有效運用加工之磨粒數量,提高對SUJ2軸承鋼之拋光效率及達到更細緻的SUJ2軸承鋼加工表面粗糙度,以降低製程成本及減少加工時間。並於實驗中探討於各種加工參數如:工作電壓、加工時間、軸向負荷和拋光輪轉速對加工後表面粗糙度及表面形貌的影響,另實驗中進行了傳統機械拋光與電泳沉積輔助拋光對SUJ2軸承鋼拋光結果的比較。
  經由實驗結果分析顯示,SUJ2軸承鋼工件於傳統機械拋光中,原始表面粗糙度可改善至Ra值0.028 μm,表面粗糙度Rt改善至0.296μm;加入電泳沉積輔助拋光後,工件原始表面粗糙度Ra可改善至0.023μm,表面粗糙度Rt改善至0.258μm,表面粗糙度Ra值優於一般傳統拋光17.86%,表面粗糙度Rt值優於一般傳統拋光12.84%,證實運用電泳沉積法輔助拋光,能使表面粗糙度改善效率更加明顯,且更能形成更好的表面形貌。
摘要(英) The study is focus on mechanical polishing and electrophoretic deposition polishing to improve the surface roughness of SUJ2 ball bearing steel. An approach to improve the efficiency of the polishing process by using electrophoretic deposition polishing. The experimental parameters includes voltage, machining time, polishing loading and polishing spindle speed. The roughness of SUJ2 surface and the morphology of SUJ2 surface were measured and evaluated.
  The result of experiment shows the original roughness of SUJ2 in traditional polishing of mechanism can be improved to Ra 0.028 μm and Rt 0.296 μm. After executing Electrophoretic Deposition polishing, the original roughness of SUJ2 can be improved to Ra 0.023 μm and Rt 0.258 μm. Electrophoretic deposition polishing was obviously superior to traditional polishing process. The roughness (Ra) of SUJ2 using electrophoretic deposition polishing was better than the roughness (Ra) of SUJ2 using traditional polishing by 17.86%. At the same time the roughness (Rt) was better by 12.84%. The result proved the electrophoretic deposition polishing can be more efficient to the surface polishing of SUJ2. Namely, it can promote the better surface texture of SUJ2.
關鍵字(中) ★ 軸承鋼
★ 電泳沉積
★ 碳化矽
★ 鏡面拋光
關鍵字(英) ★ SUJ2
★ bearing steel
★ Electrophoretic Deposition polishing
★ SiC
★ mirror surface polishing
論文目次 目 錄
摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
圖目錄 vii
表目錄 xii
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-3 研究動機與目的 4
1-4 論文架構 6
第二章 實驗基礎原理 7
2-1 研磨拋光理論 7
2-2 電泳沉積加工之原理 8
2-2-1 電泳簡介 8
2-2-2 電雙層理論(The Electric Double Layer) 8
2-2-3電動力學現象(Electrokinetic Phenomena) 9
2-2-4 粉體粒子表面電荷來源 12
2-2-5 電泳懸浮液內粉體粒子間分散行為之機制 13
2-2-7 電泳沈積法速率及方程式 15
第三章 實驗設備與流程 18
3-1 實驗方法 18
3-2 實驗設備 19
3-2-1 M-15FS 精密單平面研磨機 19
3-3 基礎實驗相關設備 20
3-3-1 蠕動泵 20
3-3-2 電解水系統 20
3-3-3 電子天平 21
3-3-4 電磁加熱攪拌器 22
3-3-5 直流電供應器 23
3-3-6 表面粗度量測儀 24
3-3-7 真空掃描式電子顯微鏡及能量散佈光譜儀 (VVSEM) 24
3-3-8 顯微影像量測系統 26
3-3-9 pH濃度計 26
3-3-10 轉速計 p27
3-4 實驗材料 p28
3-4-1 SUJ2軸承鋼工件 p28
3-4-2 碳化矽(SiC) p30
3-4-3 導電銀膠(AF-130-GPT-5) p31
3-4-4 不織布(拋光墊) p32
3-4-5 氫氧化鈉 p33
3-4-6 碳刷設計 p35
3-4-7 夾持治具設計 p36
3-5 實驗流程與方法 p37
3-5-1 工件製作 p38
3-5-2 拋光輪製作 p38
3-5-3 懸浮液調製 p39
3-6 實驗參數設定 p41
3-7 實驗架設 p42
3-8 實驗結果量測與觀察 p45
第四章 實驗結果與討論 p47
4-1 機械拋光SUJ2軸承鋼 p47
4-1-1 加工時間對表面粗糙度之影響 p47
4-1-2 垂直負荷對表面粗糙度之影響 p50
4-1-3 拋光輪轉速對表面粗糙度之影響 p54
4-2 電泳沉積輔助拋光SUJ2軸承鋼 p58
4-2-1 加工電壓對表面粗糙度之影響 p58
4-2-2 加工時間對表面粗糙度之影響 p65
4-2-3 垂直負荷對表面粗糙度之影響 p70
4-2-4 拋光輪轉速對表面粗糙度之影響 p76
4-3 機械拋光與電泳沉積輔助拋光對SUJ2軸承鋼的比較 p82
第五章 結論與未來展望 p88
5-1 結論 p88
5-2 未來展望 p89
參考文獻 p90
參考文獻 [1]Y. Tani, T. Saeki, Y. Samitsu, K. Kobayashi, Y. Sato, “Infeed grinding of silicon wafers applying electrophoretic deposition of ultrafine abrasives”, Annals of the CIRP, 47, pp.245-248, 1998.
[2]W.M. Choil, O. O. Park , “The fabrication of micropatterns of a 2D colloida assembly by electrophoretic depostion”, Nanotechnology, Vol.17, pp.325-329, p.79, 1998.
[3]K. Takahata, S. Aoki, T. Sato, “Fine surface finishing method for 3-dimensional micro structures”, Proceeding IEEE MEMS, 73-78, 1996.
[4]J. Grillaert, M. Meuris, N. Heylen, K. Devriendt and E. Vrancken, Modelling step height reduction and local removable rates based on pad-substrate interactions, CMP-MIC conference, California, p.79, 1998.
[5]Z. Haga and T. Semba, “Eletrophoretic polishing of Zirconia ceramics using a porous anodic film as a binder of ultrfine silca abrasives”, JSME International Journal Series C, Vol.41, pp.922-928, 1998.
[6]Y. Yamamoto, H. Maeda, H. Shibutani, H. Suzuki and O. Horiuchi, “ A study on constant-pressure grinding with EPD pellets”, Key Engineering Materials, Vol.257-258, pp.135-140, 2004.
[7]T. Oshita, Y. Sawaki, M. Kishimoto, “Grinding performance of pellet prepared using nanosize ceria particles”, Journal of Alloys and Compounds, Vols.408-412, pp.1118-1122, 2006.
[8]N. Kobayashia, Y. Wub and M. Nomurab, “Precision treatment of silicon wafer edge utilizing ultrasonically assisted polishing technique”, Journal of Materials Processing Technology, Vol.201, pp.531-535, 2007.
[9]Yogesh S. Gaikhe, Arvind M. Chavan a and R. S. Pawade a, “Surface Topography Analysis in Electrophoretic Deposition-Assisted Polishing of AISI 316L Stainless Steel”, Materials and Manufacturing Processes, 28: 676–682, 2013.
[10]T.Zhao, Q.Deng, J. Yuan, Y. Lin, “An experimental investingation of flat polishing with dielectrophoretic (DEP) effect of slurry”, Vol. 84, pp 1737-1746, 2016.
[11]Nikhil V. Khatekar & Raju S. Pawade, “Analysis and modeling of surface characteristics in electrophoretic deposition–assisted internal polishing of AISI 304 steel”, The International Journal of Advanced Manufacturing Technology, Volume 104, Issue 5–8, pp 3083–3094, 2019.
[12]Arvind Chavan, Yogesh Gaikhe, Sandeep Huddedar and Raju Pawade, “3D Surface Characterization of Electrophoretic Deposition Assisted Polishing of SS316L”, Journal of Applied Sciences, 12: 929-937. 2012
[13]L. M. Cook, “Chemical processes in glass polishing”, Journal of Non-Crystalline Solids, Vol.120, pp.152-171, 1990.
[14]陳正德,「碳化矽的電泳沉積現象探討」,國立中央大學,碩士論文,民國91年。
[15]陳宗淇、戴閔光,膠體化學,高等教育出版社,民國73年。
[16]S. Y. Ng,A. R. Boccaccini, “Lead Zirconate titanate films on metallic substrates by electrophoretic deposition”, Materials Science and Engineering, Vol.116, pp.208-214, 2005.
[17]崔海平,「電化學結合電泳精密拋光不鏽鋼之研究」,國立中央大學,博士論文,民國97年。
[18]彭國芳,「電泳沉積輔助竹炭拋光效果之研究」,國立中央大學,碩士論文,民國100年。
[19]Hsin-Min Lee & Tzung-Ming Chen, “A Study of Polishing Feature of Ultrasonic-Assisted Vibration Method in Bamboo Charcoal”, Advances in Materials Science and Engineering, Volume 2017, Article ID 6750467, 2017.
[20]許笙載,「運動電泳沉積法於不鏽鋼鏡面拋光之研究」,國立中央大學,碩士論文,民國96年。
指導教授 崔海平(Hai-Ping Hsui) 審核日期 2021-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明