博碩士論文 107423058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:54.236.58.220
姓名 邱政(Cheng Chiu)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 情感觀點分析之評論應用
(Review Application of Aspect Based Sentiment Analysis)
相關論文
★ 探討國內田徑競賽資訊系統-以103年全國大專田徑公開賽資訊系統為例★ 生物晶片之基因微陣列影像分析之研究
★ 台灣資訊家電產業IPv6技術地圖與發展策略之研究★ 台灣第三代行動通訊產業IPv6技術地圖與發展策略之研究
★ 影響消費者使用電子書閱讀器採納意願之研究★ 以資訊素養映對數位學習平台功能之研究
★ 台商群聚指標模式與資料分析之研究★ 未來輪輔助軟體發展之需求擷取研究
★ 以工作流程圖展現未來研究方法配適於前瞻研究流程之研究★ 以物件導向塑模未來研究方法配適於前瞻研究之系統架構
★ 應用TRIZ 探討核心因素 建構電子商務新畫布★ 企業策略資訊策略人力資源管理策略對組織績效的影響
★ 採用Color Petri Net方法偵測程式原始碼緩衝區溢位問題★ 簡單且彈性化的軟體代理人通訊協定之探討與實作
★ 利用分析層級程序法探討台灣中草藥製造業之關鍵成功因素★ 利用微陣列資料分析於基因調控網路之建構與預測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-7-28以後開放)
摘要(中) 情感分析屬於自然語言處理領域中的分支,主要目的為判斷評論者對於產品或服務的回饋是屬於正向還是負向情感。自從社群網路的崛起,越來越多人願意在平台上分享產品使用心得或是服務經驗,成為決策者新的參考依據。餐廳業者也設計線上問卷來收集顧客的用餐滿意度,藉此改善各缺點以提升顧客回流率。隨著評論的增加,很難以人工的方法瀏覽評論,需透過電腦取代人力來取得寶貴的評論資訊。目前情感分析的應用大多屬於文檔級,依據全部的評論預測出一個情感極性,忽略了評論可能包含對多個觀點的意見及情感。
為了讓使用者查看評論中針對各個觀點的情感極性,透過歷史顧客評論幫助使用者快速了解餐廳各方面的優缺點,本研究將情感觀點分析用於餐廳評論。首先使用詞嵌入將語句和觀點的字詞轉化為詞向量作為電腦計算的輸入來源,第二將觀點詞彙分為食物、價格、服務、氣氛及軼事五大類,第三使用觀點嵌入之長短期記憶結合注意力模型依照給定的觀點標籤判斷評論語句為正向、負向或中立情感。結果顯示該模型的預測準確率高達84%。藉由情感觀點分析的結果可建餐廳評論分類系統,將應用資料集區分成食物、價格、服務、氣氛等用餐體驗四大構面及軼事,使用者透過系統分別查看關於餐廳不同觀點的顧客評論,依據情感極性的分類結果得知餐廳在不同觀點上的顧客滿意度。情感觀點分析用於餐廳評論將與日俱增的評論中分門別類,對於餐廳業者及顧客都能快速找到有用的資訊。
摘要(英) Sentiment analysis belongs to a branch in the field of natural language processing. The main purpose is to determine whether the feedback of the reviewer to the product or service is positive or negative emotion. Since the rise of social networking, more and more people are willing to share product experience or service experience on the platform, becoming a new reference for decision makers. Restaurants have also designed online questionnaires to collect customers′ dining satisfaction, thereby improving various shortcomings and increasing customer return rates. With the increase of reviews, it is difficult to browse the entire review by manual methods. Therefore, it is necessary to use computers to replace manpower to obtain valuable comment information. At present, most of the applications of sentiment analysis are document level which the sentiment polarity is predicted based on all the comments, ignoring that the comments may contain opinions and sentiments on multiple aspects.
In order to allow users to view the sentiment polarity of each aspect of view in the review and understand the advantages and disadvantages of the four aspects of the restaurant′s dining experience, this study uses aspect based sentiment analysis for restaurant reviews. First, use word embedding to convert the word of sentences and aspects into word vectors as the input source of computer calculation. Second, divide the aspect word into five categories: food, price, service, atmosphere and anecdotes. Third, use Attention-based LSTM with Aspect Embedding model judges the comment sentence as positive, negative or neutral emotion according to the given five categories label. The results show that the prediction accuracy of the model is as high as 84%. A restaurant review classification system can be built based on the results of aspect based sentiment analysis. The application data set can be divided into food, price, service, atmosphere and other four aspects and anecdotes. Reviews, based on the classification results of emotional polarity, found the restaurant’s customer satisfaction from different viewpoints. Emotional opinion analysis is used in restaurant reviews to classify the ever-increasing reviews, so that restaurant owners and customers can quickly find useful information.
關鍵字(中) ★ 自然語言處理
★ 情感分析
★ 情感觀點分析
關鍵字(英) ★ NLP
★ sentiment analysis
★ aspect based sentiment analysis
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 viii
第一章 緒論 1
1.2研究動機 2
1.3研究目的 2
第二章 文獻回顧 4
2.1情感分析 4
2.1.1 詞彙法 5
2.1.2 機器學習法 6
2.2 詞嵌入 6
2.3 激活函數 9
2.4 情感觀點分析之相關研究 10
2.4.1遞迴神經網路 11
2.4.2長短期記憶模型 12
2.4.3目標取向之長短期記憶模型 13
2.4.4目標結合之長短期記憶模型 14
2.4.5觀點嵌入之長短期記憶結合注意力模型 15
2.4.7卷積神經網路模型 15
2.4.8基於變換器之雙向編碼器表示模型 16
2.5餐廳評論 16
第三章 實驗方法與步驟 19
3.1實驗流程 19
3.2詞彙轉換向量 19
3.3情感標籤轉換 22
3.4模型架構 23
3.4.1觀點嵌入之長短期記憶模型 24
3.4.2長短期記憶結合注意力模型 24
3.4.3觀點嵌入之長短期記憶結合注意力模型 26
3.5模型訓練 28
第四章 結果與討論 29
4.1 資料說明 29
4.3數值設定 31
4.3實驗結果 31
4.3.1準確率比較 31
4.3.2應用成果 32
第五章 結論 35
5.1結論與貢獻 35
5.2研究限制 36
5.3未來研究發展與建議 36
第六章 參考文獻 37
參考文獻 Akhtar, M. S., Ekbal, A., & Bhattacharyya, P. (2016). Aspect based sentiment analysis: category detection and sentiment classification for Hindi. Paper presented at the International Conference on Intelligent Text Processing and Computational Linguistics.
Andaleeb, S. S., & Conway, C. (2006). Customer satisfaction in the restaurant industry: an examination of the transaction‐specific model. Journal of services marketing.
Blank, G. (2006). Critics, ratings, and society: The sociology of reviews: Rowman & Littlefield Publishers.
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American society for information science, 41(6), 391-407.
Farmer, R., & Glass, B. (2010). Building web reputation systems: " O′Reilly Media, Inc.".
Gan, Q., Ferns, B. H., Yu, Y., & Jin, L. (2017). A text mining and multidimensional sentiment analysis of online restaurant reviews. Journal of Quality Assurance in Hospitality & Tourism, 18(4), 465-492.
Ganu, G., Kakodkar, Y., & Marian, A. (2013). Improving the quality of predictions using textual information in online user reviews. Information Systems, 38(1), 1-15.
Guernsey, L. (2000). Suddenly. 2000 “Everybody′s an expert on everything. The New York Times, February, 3.
Gupta, S., McLaughlin, E., & Gomez, M. (2007). Guest satisfaction and restaurant performance. Cornell Hotel and Restaurant Administration Quarterly, 48(3), 284-298.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
Krishna, M. H., Rahamathulla, K., & Akbar, A. (2017). A feature based approach for sentiment analysis using SVM and coreference resolution. Paper presented at the 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT).
Kumar, N., & Benbasat, I. (2006). Research note: the influence of recommendations and consumer reviews on evaluations of websites. Information Systems Research, 17(4), 425-439.
Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis lectures on human language technologies, 5(1), 1-167.
Mattila, A. S. (2001). Emotional bonding and restaurant loyalty. Cornell Hotel and Restaurant Administration Quarterly, 42(6), 73-79.
Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams engineering journal, 5(4), 1093-1113.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Paper presented at the Advances in neural information processing systems.
Montoyo, A., MartíNez-Barco, P., & Balahur, A. (2012). Subjectivity and sentiment analysis: An overview of the current state of the area and envisaged developments. In: Elsevier.
Mubarok, M. S., Adiwijaya, & Aldhi, M. D. (2017). Aspect-based sentiment analysis to review products using Naïve Bayes. Paper presented at the AIP Conference Proceedings.
Mulyo, B. M., & Widyantoro, D. H. (2018). Aspect-Based Sentiment Analysis Approach with CNN. Proceeding of the Electrical Engineering Computer Science and Informatics, 5(1), 142-147.
Nasukawa, T., & Yi, J. (2003). Sentiment analysis: Capturing favorability using natural language processing. Paper presented at the Proceedings of the 2nd international conference on Knowledge capture.
Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. Paper presented at the Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP).
Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., & Manandhar, S. (2014). SemEval-2014 Task 4: Aspect based sentiment analysis. In Proceedings of the International Workshop on Semantic Evaluation, SemEval ’14, 27–35.
Resnick, P., & Zeckhauser, R. (2002). Trust among strangers in Internet transactions: Empirical analysis of eBay′s reputation system. The Economics of the Internet and E-commerce, 11(2), 23-25.
Ryu, K., & Han, H. (2010). Influence of the quality of food, service, and physical environment on customer satisfaction and behavioral intention in quick-casual restaurants: Moderating role of perceived price. Journal of Hospitality & Tourism Research, 34(3), 310-329.
Sulek, J. M., & Hensley, R. L. (2004). The relative importance of food, atmosphere, and fairness of wait: The case of a full-service restaurant. Cornell Hotel and Restaurant Administration Quarterly, 45(3), 235-247.
Sun, C., Huang, L., & Qiu, X. (2019). Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence. arXiv preprint arXiv:1903.09588.
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational linguistics, 37(2), 267-307.
Tang, D., Qin, B., Feng, X., & Liu, T. (2015). Effective LSTMs for target-dependent sentiment classification. arXiv preprint arXiv:1512.01100.
Thet, T. T., Na, J.-C., & Khoo, C. S. (2010). Aspect-based sentiment analysis of movie reviews on discussion boards. Journal of information science, 36(6), 823-848.
Wang, B., & Liu, M. (2015). Deep learning for aspect-based sentiment analysis. Stanford University report.
Wang, Y., Huang, M., Zhu, X., & Zhao, L. (2016). Attention-based LSTM for aspect-level sentiment classification. Paper presented at the Proceedings of the 2016 conference on empirical methods in natural language processing.
Xue, W., & Li, T. (2018). Aspect based sentiment analysis with gated convolutional networks. arXiv preprint arXiv:1805.07043.
Yadav, K. (2020). A Comprehensive Survey on Aspect Based Sentiment Analysis. arXiv preprint arXiv:2006.04611.
Zhang, Y., Jin, R., & Zhou, Z.-H. (2010). Understanding bag-of-words model: a statistical framework. International Journal of Machine Learning and Cybernetics, 1(1-4), 43-52.
指導教授 薛義誠 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明