博碩士論文 107426010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.229.142.91
姓名 羅翊伶(Yi-Ling Luo)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 基於關聯規則的多元時間序列資料趨勢挖掘
(Patterns Discovery of Multiple Time Series Data Based on Association Rule)
相關論文
★ 二階段作業研究模式於立體化設施規劃應用之探討–以半導體製造廠X及Y公司為例★ 推行TPM活動以改善設備總合效率並提昇 企業競爭力...以U公司桃園工廠為例
★ 資訊系統整合業者行銷通路策略之研究★ 以決策樹法歸納關鍵製程暨以群集法識別關鍵路徑
★ 關鍵績效指標(KPI)之建立與推行 - 在造紙業★ 應用實驗計劃法- 提昇IC載板錫球斷面品質最佳化之研究
★ 如何從歷史鑽孔Cp值導出新設計規則進而達到兼顧品質與降低生產成本目標★ 產品資料管理系統建立及導入-以半導體IC封裝廠C公司為例
★ 企業由設計代工轉型為自有品牌之營運管理★ 運用六標準差步驟與FMEA於塑膠射出成型之冷料改善研究(以S公司為例)
★ 台灣地區輪胎產業經營績效之研究★ 以方法時間衡量法訂定OLED面板蒸鍍有機材料更換作業之時間標準
★ 利用六標準差管理提升生產效率-以A公司塗料充填流程改善為例★ 依流程相似度對目標群組做群集分析- 以航空發動機維修廠之自修工件為例
★ 設計鏈績效衡量指標建立 —以電動巴士產業A公司為例★ 應用資料探勘尋找影響太陽能模組製程良率之因子研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在多元時間序列上探索事件的趨勢,挖掘趨勢之間的相連關係,對業者來說可能可以發現新的異常發生時所應該關注的其他事件,進而加以調整機台,舉例來說,我們能夠在機台發生張力劇烈下降時,透過規則的分析得知這樣的情況常常跟隨著劇烈的某作用輪轉速上升或是呈現某情況的起伏。我們希望透過我們所提的方法,可以讓往後公司進行機台調整時,能多方考慮可能影響的因素,讓機台更穩健運作。
然而傳統上的關聯規則以處理類別資料為主,資料的前後順序是被忽視的。後來當研究上欲把關聯規則應用在工程數值資料時,常見的處理方式是利用Piecewise Aggregate Approximation (PAA)、Symbolic Aggregate Approximation (SAX)的方法,分別是利用PAA將資料進行降維,以減少關聯規則運算中所需的龐大作用時間,再利用SAX對資料進行符號化,以利關聯規則所需的交易集資料的製作。但是和傳統關聯規則中資料型態不同的是,在多元時間序列資料上,資料數值的前後發生順序往往代表一定的意義,而且前後筆資料可能是有連帶關係的,若降維可能會稀釋甚至忽略掉資料本身的特性。
而在解決這部分問題時,舉例來說,A事件是先發生a再發生b,B事件是先發生b再發生a,本研究希望能在時序資料中實現這個欲區分A = (a, b) 和B = (b , a)差異的概念,並且區分出a事件是來自於A,b事件是來自於B,也就是區分資料欄位之間的不同,本研究中透過不同的交易集資料建立手法,以利關聯規則在作分析時可以更進一步關注資料集上的欄位差異,進而整合,做資料欄位上趨勢的分析,讓管理者可以根據分析結果,進行適當的維修工作或其他決策。
摘要(英) Exploring the trend of events on a multivariate time series and digging up the connection between the trends, it is possible for the engineer to find other events that could be concerned when a new anomaly occurs, and then adjust machine, for example, we can know that when the tension of the machine drops sharply, it often follows a sharp increase in the speed of wheel. We hope that there are more adjustment method can be used through the idea we proposed.
However, the traditional association rules mainly deal with category data, such as transaction data of stores, and the order of the data is ignored. Recently, it often to find the Piecewise Aggregate Approximation (PAA) and Symbolic Aggregate Approximation (SAX) is applied to engineering numerical data, which uses PAA to reduce the dimensionality of the data to reduce the huge process time required in the calculation of association rules, and then uses SAX to symbolize the data to present the transaction set data required by the association rules. Unlike the data types in traditional association rules, the order of occurrence of the data values often represents a certain meaning on multivariate time series data, and it may be related between previous one and the next one. If the dimension is reduced, it may be diluted or even ignored the characteristics of the data itself.
We hope to achieve the idea to distinguish which the event of A = (a, b) and B = (b, a) are different, and also distinguish the difference between data fields in our research. Different transaction set data was established to facilitate the association rules about the field differences on the data set in our research. The analysis based on our method allows managers to not only find out the field trends that affect each other, but also use the method of our research to make the engineer know more about the connection between the machine columns and adjust the machine for proper maintenance work or other decisions.
關鍵字(中) ★ 關聯規則
★ 多元時間序列
★ 資料離散化
關鍵字(英) ★ Association Rule
★ Multivariate time series
★ Data discretization
論文目次 Contents
中文摘要 i
Abstract ii
Contents iii
Contents of Tables v
Contents of Figures vi
Chapter 1 Introduction 1
1.1 Background / Motivation 1
1.2 Research objectives 3
Chapter 2 Literature Review 4
2.1 Smart manufacturing and Time series data 4
2.2 Discretization and Inverse Normal Distribution 6
2.3 Association Rule 10
Chapter 3 Methodology 14
3.1 Data Preprocessing 14
3.2 Discretization 17
3.3 Transaction Data 19
3.4 Association Rule 20
Chapter 4 Experiment 25
4.1 Transform data distribution 25
4.2 Data discretization and symbolization 26
4.3 Transaction database 28
4.4 Association Rule 30
Chapter 5 Conclusion 37
Reference 39
參考文獻 [1] Alcácer, V. and Cruz-Machado, V., “Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems.”, Engineering Science and Technology, an International Journal, Vol.22, pp.899-919, 2019.
[2] Agrawal, R. and Srikant R., “Fast Algorithms for Mining Association Rules.”, Proceedings of the 20th VLDB Conference Santiago, Chile, 1994.
[3] Butler,M. and Kazakov, D., “SAX Discretization Does Not Guarantee Equiprobable Symbols.”, IEEE Transactions on Knowledge and data engineering, Vol.27, No.4, 2015.
[4] Beasley, T. M. and Erickson, S., “Rank-Based Inverse Normal Transformations are Increasingly Used, But are They Merited?”, Journal of cancer science & therapy,2010.
[5] Blom, G., Statistical estimates and transformed beta-variables., Diss. Almqvist and Wiksell, 1958.
[6] Cai, X., Li, H. and Liu, A., “A marginal rank-based inverse normal transformation approach to comparing multiple clinical trial endpoints.”, Elementary statistics with applications in medicine. Prentice-Hall., 2016.
[7] Fu, T. C., “A review on time series data mining.”, Engineering Applications in Artificial Intelligence, Vol.24, pp.164-181, 2011.
[8] Han, J., Kamber, M. and Pei, J., Data mining concepts and techniques third edition., The Morgan Kaufmann Series in Data Management Systems, 2011.
[9] Hirate, Y. and Yamana, H., “Generalized Sequential Pattern Mining with Item Intervals.”, pp.51-60,2006.
[10] Leyh, C. and Martin, S., “Industry 4.0 and Lean Production – A Matching Relationship? An analysis of selected Industry 4.0 models”, Federated Conference on Computer Science and Information Systems, Vol.11, pp.989-993, 2017.
[11] Lin, J., Keogh, E., Lonardi, S., and Chiu, B., “A symbolic representation of time series, with implications for streaming algorithms.” In Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, pp.2-11, 2003.
[12] McNicholas, P. D., Murphy, T. B. and O’Regan, M., “Standardising the lift of an association rule.”, Statistical and computational methods in data analysis. Amsterdam, The Netherlands:: North-Holland Publishing Company, Vol.52, pp.4712-4721, 2008.
[13] Schl¨uter, T. and Conrad, S., “About the Analysis of Time Series with Temporal Association Rule Mining.”, IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp.325-332, 2011.
[14] Srikant, R. and Agrawal, R., “Mining sequential patterns: Generalizations and performance improvements”, In International Conference on Extending Database Technology, pp.1-17, 1996.
[15] Wang, J., Liu, C., Zhu, M., Guo, P., and Hu, Y., “Sensor Data Based System-Level Anomaly Prediction for Smart Manufacturing.”, IEEE International Congress on Big Data (BigData Congress), pp.158-165, 2018.
[16] Xue, R., Zhang, T., Chen, D., Le, J., and Lavassani, “Sensor time series association rule discovery based on modified discretization method.”, IEEE International Conference on Computer Communication and the Internet (ICCCI), pp.196-202, 2016.
[17] Yin, S., Li, X., Gao, H., and Kaynak, O., “Data-based techniques focused on modern industry: An overview.”, IEEE Transactions on Industrial Electronics, Vol.62(1), pp.657-667, 2014.
[18] Zaki, M. J., “SPADE: An efficient algorithm for mining frequent sequences.”, Machine learning, Vol.42, pp.31-60, 2001.
指導教授 曾富祥(Fu-Shiang Tseng) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明