博碩士論文 107426027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.145.16.90
姓名 陳建宏(Chien-Hung Chen)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 工業用電考量時間電價之太陽能發電系統最佳配置規劃
(Optimal Planning of Solar PV Systems for Industrial Users Considering Time of Use)
相關論文
★ 以模擬退火演算法 進行化鍍製程無關聯平行機台之排程★ 以混合整數規劃 安插電鍍銅平行機台之緊急訂單
★ 以混合整數規劃進行非相關平行機台之批次製造排程★ 考量最大利潤之再生能源發電業最佳能源分配
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來因各國工商業的快速發展,並且隨著科技的進步及人口數量增加之下,開始大量生產能源,並且加速基礎能源的消耗,這也造成石化能源面臨枯竭的危機以及生產能源所排放溫室氣體的問題。若氣溫上升1.5°C則將造成珊瑚白化、海平面上升、乾旱和暴風雨等極端氣候發生,也將造成許多家庭流離失所的現象日漸嚴重。在未來的十年內,每年必須減少7.6%的二氧化碳排放量,才有機會減緩全球暖化的速度、緩和氣候劇烈的變化並且抑制持續升溫的現象,因此我們必須正視全球暖化的問題,並落實節能減碳的承諾及責任。這也使傳統化石燃料發電逐漸被乾淨的再生能源取代,將會減輕傳統化石燃料發電方式所產生的溫室效應及汙染問題,各國也開始訂立潔淨能源明確的發展目標,並且積極不斷的鼓勵推動再生能源之政策及措施,使得再生能源的重要性也越來越受大家重視。
本研究目的在於三段式時間電價的基礎下,以台灣特高壓電力工業用戶為研究對象,並以最低用電總成本為目標,並運用數學規劃求解的方式,建立數學模型來規劃太陽能發電結合儲能系統的最佳化配置問題。加上政府所頒布的用電大戶條款,必須設置10%比例的再生能源發電設備之政策,這代表產業要開始走向再生能源發電為目標。再生能源電力如果能併入時間電價用戶電力系統可以輔助或減緩台灣電力公司所供應的電量,因此若將太陽能電力使用在工業能源用戶,那麼所使用的能源管理方式將需要進一步地探討,並藉由有效的利用太陽能發電和儲能設備,再透過適當的規劃電力調配,協調出蓄電池的最佳儲能、釋能策略,並且將依據工業用戶的用電需求量,來求得最佳的太陽能板設置面積及儲能系統裝置容量,以及針對儲能系統不同的單位設置成本作敏感度分析。結果表明太陽能發電、時間電價與儲能系統搭配使用時,可以大大減少尖峰時段用電,總用電成本也大幅下降37%,不但能減少台電供電的負擔,更能讓削峰填谷的效益更加明顯,分散尖峰用電來改變用電的習慣。
摘要(英) In recent years, due to the rapid development of industry and commerce in various countries, as well as the progress of science and technology and the increase of population. The start of mass production of energy and the acceleration of the consumption of basic energy sources has also led to the depletion of fossil fuels and the emission of greenhouse gases from energy production. An increase of 1.5°C would lead to extreme climates such as coral bleaching, sea level rise, droughts and storms, and the increasing displacement of many families. Over the next decade, we must reduce carbon dioxide emissions by 7.6% per year in order to have the chance of slowing the pace of global warming, moderating dramatic changes in the climate and curbing continued warming. Therefore, we must face up to the problem of global warming and implement the commitment and responsibility of energy conservation and carbon reduction. This also makes the traditional fossil fuel power generation gradually replaced by clean renewable energy, which will reduce the greenhouse effect and pollution caused by the traditional fossil fuel power generation. Countries also began to set clear development goals for clean energy, and actively and continuously encouraged the promotion of renewable energy policies and measures, making the importance of renewable energy more and more attention.
The purpose of this study is to take the users of Taiwan high voltage power industry as the research object on the basis of three-stage time of use, and take the lowest total electricity cost as the target. A mathematical model is established to plan the optimal configuration of solar power generation combined with energy storage system by means of mathematical programming. In addition to the large power consumption provisions issued by the government, the policy of 10% of renewable energy generation equipment must be set, which means that the industry will start to move towards renewable energy generation as the target. If renewable energy power can be incorporated into the time of use power system, it can assist or slow down the power supply provided by Taiwan Electric Power Company. Therefore, if solar power is used for industrial energy users, the energy management mode will need to be further discussed. The optimal energy storage and release strategy of the battery should also be coordinated through the effective utilization of solar energy generation and energy storage equipment and proper planning of power supply capacity. In addition, the optimal solar panel setting area and energy storage system device capacity will be obtained according to the demand of industrial users, and distributed electric energy and energy storage equipment will be brought into the optimal operation mode through real-time regulation. In addition, sensitivity analysis is conducted for different unit setup costs of the energy storage system. The results show that when solar power generation, time price and energy storage system are used together, the power consumption during peak hours can be greatly reduced, and the total power consumption cost can also be significantly reduced by 37%. It can not only reduce the burden of power supply, but also make the benefit of peak load cutting more obvious, and disperse the peak power consumption to change the habit of electricity consumption.
關鍵字(中) ★ 永續發展
★ 再生能源
★ 太陽能發電
★ 儲能系統
★ 時間電價
關鍵字(英) ★ Sustainable Development
★ Renewable Energy
★ Solar PV
★ Storage System
★ Time of Use
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 3
1.3 論文架構 4
第二章 研究問題 5
2.1 再生能源(Renewable Energy) 5
2.2 太陽能光電(Photovoltaic) 7
2.3 研究問題 10
第三章 文獻探討 12
3.1 永續發展(Sustainable Development) 12
3.2 再生能源 16
3.2.1 太陽能發電 17
3.2.2 儲能系統 20
3.3 時間電價 22
第四章 研究方法 25
4.1 基本假設 25
4.2 符號定義 26
4.3 數學模型 27
第五章 電腦實驗 29
5.1 資料蒐集 29
5.2 實驗結果分析 35
第六章 結論 44
6.1 研究總結 44
6.2 後續工作 45
參考文獻 46
參考文獻 中文文獻
[1] 台灣電力公司(2018)。電價表。網站:https://reurl.cc/O13gng(上網日期:2020年5月10日)
[2] 伊俞歡(2019)。用電大戶綠電條款出爐全台500用電大戶5年內需用1成綠電。網站: https://www.storm.mg/article/1794785(上網日期: 2019年12月10日)
[3] 行政院(2012)。綠色能源產業躍升計畫。網站:https://grb-topics.stpi.narl.org.tw/file/download?flsId=4b1141c264eef5760164eef862cd0092(上網日期:2020年12月7日)
[4] 行政院(2019)。太陽光電兩年計畫。網站:https://reurl.cc/7XDjyb(上網日期:2019年12月7日)
[5] 林祥輝(2016)。日本再生能源特別措施(FIT)法修正案。網站:https://km.twenergy.org.tw/Document/share?JHtp2BF2YTJPAU5tEwRFYQ==(上網日期:2020年12月10日)
[6] 經濟部能源局(2016)。太陽光電2年推動計畫。https://energywhitepaper.tw/upload/201711/151080022394587.pdf(上網日期:2019年12月10日)
[7] 經濟部能源局(2018)。再生能源裝(設)置容量。網站:https://www2.revo.org.tw/article.html?PostSN=78(上網日期:2019年12月10日)
[8] 經濟部能源局(2018)。新及再生能源推動配套方案。網站:https://energywhitepaper.tw/upload/201801/151684997183219.pdf(上網日期:2019年12月7日)
[9] 經濟部能源局(2019)。我國燃料燃燒二氧化碳排放統計與分析。
[10] 資策會產業情報研究所(2008)。綠色能源當道-全球太陽能電池市場與產業發展趨勢分析。網站:https://reurl.cc/R4reOg(上網日期:2019年12月10日)
[11] 數位時代(2019)。Model 3單月掛牌數破千台!特斯拉將引進新一代快充站,15分就能充飽。https://reurl.cc/WdQgo7(上網日期:2020年5月12日)
英文文獻
[12] Bhattacharyya, S. C. Energy access programmes and sustainable development: A critical review and analysis. Energy for Sustainable Development, 2012, 16(3), 260–271.
[13] Birtchnell, T., Böhme, T., Gorkin, R. 3D printing and the third mission: the university in the materialization of intellectual capital. Technological Forecasting and Social Change, 2017, 123, 240–249.
[14] Bloomberg New Energy Finance (BNEF). New Energy Outlook 2018. https://about.bnef.com/new-energy-outlook/ (accessed May 12, 2020)
[15] BYJU′S. Difference Between Primary Cell and Secondary Cell. https://byjus.com/chemistry/difference-between-primary-cell-and-secondary-cell/ (accessed Mar. 31, 2020)
[16] Neto, G. C. D., Correia, J. M. F., Silva, P. C., Sanches, A. G. D., & Lucato, W. C. Cleaner Production in the textile industry and its relationship to sustainable development goals. Journal of Cleaner Production, 2019, 228, 1514–1525.
[17] Ding, B. Pharma Industry 4.0:Literature review and research opportunities in sustainable pharmaceutical supply chains. Process Safety and Environmental Protection, 2018, 119, 115–130.
[18] Farias-Rocha, A. P., Hassan, K., Malimata, J. R. R., Sánchez-Cubedo, G. A., & Rojas-Solórzano, L. R. Solar Photovoltaic Policy Review and Economic Analysis for On-grid Residential Installations in the Philippines. Journal of Cleaner Production, 2019, 223, 45–56.
[19] FIWARE Lab. Smart Energy Data: Aachen/ Cologne Virtual Power Plant. https://reurl.cc/Mv5gL3 (accessed May 08, 2020)
[20] Gupta, J., Vegelin, C. Sustainable development goals and inclusive development. Agreements:Politics, Law and Economics, 2016, 16(3), 433–448.
[21] Harajli, H., Kabakian, V., El-Baba, J., Diab, A., & Nassab, C. Commercial-scale hybrid solar photovoltaic - diesel systems in select Arab countries with weak grids:An integrated appraisal. Energy Policy, 2019, 137, 111190.
[22] International Energy Agency (IEA). World Energy Outlook 2019. https://www.iea.org/reports/world-energy-outlook-2019 (accessed Mar. 30, 2020)
[23] International Renewable Energy Agency (IRENA). Renewable Power Generation Costs in 2018. https://reurl.cc/d0kgg2 (accessed May 12, 2020)
[24] Laajimi, M. & Go, Y. I. Energy storage system design for large-scale solar PV in Malaysia: technical and environmental assessments. Journal of Energy Storage, 2019, 26, 100984.
[25] Liu, Y., Wu, X., Song, Z., & Wu, G. Sizing optimization of a wind-energy storage system considering battery life. Renewable Energy, 2019, 147, 2470–2483.
[26] Jabbour, A. B. L. D., Ndubisi, N. O., & Seles, B. M. R. P. Sustainable Development in Asian Manufacturing SMEs: Progress and Directions. International Journal of Production Economics, 2019, 225, 107567.
[27] Masaud, T. M., Lee, K., & Sen, P. K. An overview of energy storage technologies in electric power systems: What is the future? North American Power Symposium 2010, 80401.
[28] Mbungu, N. T., Bansal, R. C., Naidoo, R., Miranda, V., & Bipath, M. An optimal energy management system for a commercial building with renewable energy generation under real-time electricity prices. Sustainable Cities and Society, 2018, 41, 392–404.
[29] Molina-Maturano, J., Speelman, S., & De Steur, H. Constraint-based innovations in agriculture and sustainable development:A scoping review. Journal of Cleaner Production, 2019, 246, 119001.
[30] Munasinghe, M. Environmental Economics and Sustainable Development. World Bank 1993.
[31] Nolden, C., Barnes, J., & Nicholls, J. Community energy business model evolution:A review of solar photovoltaic developments in England. Renewable and Sustainable Energy Review, 2020, 122, 109722.
[32] Ortiz, O., Castells, F., & Sonnemann, G.. Sustainability in the construction industry:A review of recent developments based on LCA. Construction and Building Materials, 2009, 23(1), 28–39.
[33] Papadopoulos, V., Knockaert, J., Develder, C., & Desmet, J. Investigating the need for real time measurements in industrial wind power systems combined with battery storage. Applied Energy, 2019, 247, 559–571.
[34] Pohlmann, C. R., Scavarda, A. J., Alves, M. B., & Korzenowski, A. L. The role of the focal company in sustainable development goals:A Brazilian food poultry supply chain case study. Journal of Cleaner Production, 2019, 245, 118798.
[35] Regional Development Programme in Albania. Sustainability in Regional Development (key definitions & implications). (accessed Mar. 30, 2020)
http://rdpa.al/sustainable-regional-development-definitions-implications/
[36] Rehman, S., Al-Hadhrami, L. M. & Alam, M. M. Pumped hydro energy storage system:A technological review. Renewable and Sustainable Energy Reviews, 2015, 44, 586– 598.
[37] Renewable Energy Policy Network for the 21st Century (REN21). Renewables 2019 Global Status Report. 2019. https://www.ren21.net/gsr-2019/ (accessed Dec. 7, 2019)
[38] Rosas-Flores, J. A., Zenón-Olvera, E., & Gálvez, D. M. Potential energy saving in urban and rural households of Mexico with solar photovoltaic systems using geographical information system. Renewable and Sustainable Energy Reviews, 2019, 116, 109412.
[39] Sahoo, S. K. Renewable and sustainable energy reviews solar photovoltaic energy progress in India:A review. Renewable and Sustainable Energy Reviews. 2016, 59, 927–939.
[40] Sichilalu, S., Tazvinga, H., & Xia, X. Optimal control of a fuel cell/wind/PV/grid hybrid system with thermal heat pump load. Solar Energy, 2016, 135, 59–69.
[41] Sufyan, M., Rahim, N. A., Aman, M. M., Tan, C. K., & Raihan, S. R. S. Sizing and applications of battery energy storage technologies in smart grid system:A review. Journal of Renewable and Sustainable Energy, 2019, 11(1), 014105.
[42] Talent, O., & Du, H. Optimal sizing and energy scheduling of photovoltaic-battery systems under different tariff structures. Renewable Energy, 2018, 129, 513–526.
[43] Tesla. Powerwall. https://www.tesla.com/zh_TW/powerwall (accessed May 20, 2020)
[44] The Climate Group and Carbon Disclosure Project. RE100. http://there100.org/ (accessed Dec. 10, 2019)
[45] Khan, S. U. D., Almutairi, Z. A., Al-Zaid, O. S. & Khan, S. U. D. Development of low concentrated solar photovoltaic system with lead acid battery as storage device. Current Applied Physics, 2020, 20(4), 582–588.
[46] United Nations Environment Programme (UNEP). Emissions Gap Report 2019. https://www.unenvironment.org/interactive/emi-ssions-gap-report/2019/ (accessed Mar. 30, 2020)
[47] United Nations. Paris Agreement. 2015. https://reurl.cc/NjAl4k (accessed Dec. 7, 2019)
[48] Vogele, S., Grajewski, M., Govorukha, K., & Rubbelke, D. Challenges for the European steel industry: Analysis. possible consequences and impacts on sustainable development. Applied Energy, 2020, 264, 114633.
[49] Wang, X., Yuen, K. F., Wong, Y. D., & Li, K. X. How can the maritime industry meet Sustainable Development Goals? An analysis of sustainability reports from the social entrepreneurship perspective. Transportation Research Part D: Transport and Environment, 2020, 78, 102173.
[50] World Commission on Environment and Development (WCED). Our Common Future. Oxford University Press 1987.
[51] Wen, S., Lan, H., Yu, D. C., Fu, Q., Hong, Y. Y., Yu, L., & Yang, R. Optimal sizing of hybrid energy storage sub-systems in PV/diesel ship power system using frequency analysis. Energy, 2017, 140, 198–208.
[52] World Meteorological Organization. The Global Climate in 2015–2019. https://library.wmo.int/index.php?lvl=notice_display&id=21522#.XojJ4cgzZPZ (accessed Dec.7, 2019)
[53] Yang, Y., Bremner, S., Menictas, C., & Kay, M. Battery energy storage system size determination in renewable energy systems:A review. Renewable and Sustainable Energy Reviews, 2018, 91, 109–125.
[54] Yuan, X., Liu, X., & Zuo, J. The development of new energy vehicles for a sustainable future: A review. Renewable and Sustainable Energy Reviews, 2015, 42, 298–305.
[55] Zhang, H., Cai, J., Fang, K., Zhao, F., & Sutherland, J. W. Operational optimization of a grid-connected factory with onsite photovoltaic and battery storage systems. Applied Energy, 2017, 205, 1538–547.
[56] Zhou, K., Wei, S., & Yang, S. Time-of-use pricing model based on power supply chain for user-side microgrid. Applied Energy, 2019, 248, 35–43.
指導教授 王啓泰(Chi-Tai Wang) 審核日期 2020-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明