摘要(英) |
This research is based on the background of the number of people issued by the tourist attractions in Taoyuan City and researches the technology of de-identification of mobile communication through big data data mining method, to collect statistics and analyze the applicable information and transform it into the information provided to the competent authority and the Case study analysis of popular use. To achieve the following two important purposes: In terms of big data mining practice, this study collects and organizes the actual operation of Taoyuan City′s scenic spot information, explores the evolution and improvement of related information, and compares the data released by other central, county and city agencies in Taiwan. The analysis of shortcomings can more effectively achieve the optimization of data mining when providing other similar program planning in the future. Based on the empirical evidence of the case study process, the internal data is collected comprehensively, accurately, and in real-time with the characteristics of big data, and the external traffic warning lights are adjusted to red, yellow, and green according to the actual situation. In addition, real-time image assistance of scenic spots is added. Comparing similar case studies, find out the key factors that can be imitated, and use and integrate them into future development as important practical data in Taiwan′s future smart tourism service transformation plan. The main attraction management lies in the long-term collection of accumulated information by the competent authorities of venues and venues. Traffic control personnel or traffic police units with front-line traffic guidance, and even traffic units related to road planning should be included together as a cooperative unit in the actual measurement, and corrections based on the actual measurement should be included. After that, improving the reliability and validity of the entire data and giving feedback as follow-up optimization is a suitable estimate, and because the estimate application is more convenient, the open data estimate can be applied to more stakeholders and institutions. and participants. |
參考文獻 |
參考文獻:
一、 中文部分
1. 吳宗瓊(2003)觀光發展階段與產業依賴程度對觀光衝擊認知影響之探討,戶外遊憩研究,16(1),45-61。
2. 林連聰、黃光男、黃美賢、曾亮、徐明珠和陳逸君(2019)旅遊與文化,五南圖書出版股份有限公司。
3. 林菁真、陳玉珮和胡俊傑(2010)觀光發展衝擊認知與態度之研究-以澎湖居民爲例,島嶼觀光研究,3(1),164-186。
4. 陳逸淞、陳玟穎和施多加(2019)利用電信大數據掌握人潮遊憩與交通行為,台灣當代觀光(2),1-26。
5. 黃佳寗(2019)歐洲推行MaaS經驗對我國發展智慧交通的啟示,經濟前瞻(186),87-90。
6. 黃雅涵(2020)全球化下的過度旅遊-軟實力的負面效應。
7. 劉子利、陳嘉雯(2009),大溪老街居民觀光發展衝擊知覺對觀光發展態度影響之研究,人文社會科學研究,3(1),20-36。
8. 鄭琮琰(2003)大型空間展覽場展覽活動之避難安全評估之研究---以台北世貿展覽館為例。
9. 謝謹如、牟鍾福(2016)智慧觀光網站之營運模式探討,觀光與休閒管理期刊,4(1),1-9。
二、 英文部分
1. Andereck, K. L., & Vogt, C. A. (2000). The relationship between residents’ attitudes toward tourism and tourism development options. Journal of travel research, 39(1), 27-36.
2. Ap, J., & Crompton, J. L. (1998). Developing and testing a tourism impact scale. Journal of travel research, 37(2), 120-130.
3. Ayres, D. M. (2000). Anatomy of a Crisis. https://doi.org/10.1515/9780824861445
4. Gursoy, D., Jurowski, C., & Uysal, M. (2002). Resident attitudes: A structural modeling approach. Annals of Tourism Research, 29(1), 79-105.
5. Horn, C., & Simmons, D. (2002). Community adaptation to tourism: comparisons between Rotorua and Kaikoura, New Zealand. Tourism management, 23(2), 133-143.
6. Lankford, S. V., & Howard, D. R. (1994). Developing a tourism impact attitude scale. Annals of Tourism Research, 21(1), 121-139.
7. Maas, J., Verheij, R. A., Groenewegen, P. P., De Vries, S., & Spreeuwenberg, P. (2006). Green space, urbanity, and health: how strong is the relation? Journal of epidemiology & community health, 60(7), 587-592.
8. Rasoolimanesh, S. M., & Jaafar, M. (2017). Sustainable tourism development and residents’ perceptions in World Heritage Site destinations. Asia Pacific Journal of Tourism Research, 22(1), 34-48.
9. Ryan, C., Scotland, A., & Montgomery, D. (1998). Resident attitudes to tourism development—a comparative study between the Rangitikei, New Zealand and Bakewell, United Kingdom. Progress in tourism and Hospitality Research, 4(2), 115-130.
10. Ryan, J., & Silvanto, S. (2009). The World Heritage List: The making and management of a brand. Place Branding and Public Diplomacy, 5(4), 290-300.
11. Seraphin, H., Sheeran, P., & Pilato, M. (2018). Over-tourism and the fall of Venice as a destination. Journal of Destination Marketing & Management, 9, 374-376.
三、 新聞和網路部分
1. 劉映君. (2017). 遊客太多 京都居民抱怨「觀光公害」. https://www.mirrormedia.mg/story/20170703int003/
2. 劉曜華, & 黄淑娥. (2006). 中台灣觀光産業發展與分析. 中國地方自治, 59(7), 33-52. https://doi.org/10.6581/lsgc.2006.59(7).03
3. 交通部觀光局. (2021). 主要觀光遊憩據點統計作業要點. https://admin.taiwan.net.tw/BusinessInfo/TouristStatistics
4. 交通部觀光局. (2022). 景點. https://www.taiwan.net.tw/m1.aspx?sNo=0000082
5. 臺北市政府觀光傳播局. (2021, 110-08-06). 北市推出「旅遊人潮警示燈號系統」 11處熱門景點人潮即時掌握. https://www.tpedoit.gov.taipei/News_Content.aspx?n=603755835E928BED&s=790318AC214A2C71
6. 桃園市觀光旅遊局. (2022). 施政成果報告. https://tour.tycg.gov.tw/zh-tw/govinfo/policyoutcomeslist
7. 陳心瑜. (2020). 五一新北推人潮儀表板 自列80處人潮示警點較1968app更多. 自由時報. https://news.ltn.com.tw/news/life/breakingnews/3150420
8. UNWTO, 聯. (2017). 2017 UNWTO/WTM MINISTERS’ SUMMIT: 60 TOURISM MINISTERS AND COMPANIES GATHER TO DISCUSS "OVERTOURISM". https://www.unwto.org/archive/europe/press-release/2017-11-02/2017-unwtowtm-ministers-summit-60-tourism-ministers-and-companies-gather-di
9. UNWTO, (2017). TOURISM AND CULTURE. https://www.unwto.org/tourism-and-culture |