博碩士論文 107521010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.149.229.253
姓名 陳雅寧(Ya-Ning Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 在砷化銦鎵 /砷化鋁銦單光子崩潰二極體中崩潰閃光引致光學串擾之探討
(Breakdown Flash Induced Optical Crosstalk Issue in InGaAs/InAlAs Single Photon Avalanche Diode)
相關論文
★ 應用自差分電路對具有不同擊穿電壓之多層累增層的砷化銦鎵/砷化銦鋁之單光子雪崩二極體性能影響★ 砷化銦鎵/砷化鋁銦單光子崩潰二極體陣列 之光學串擾模擬
★ 改變電荷層摻雜濃度之砷化銦鎵/砷化銦鋁單光子累增二極體的特性探討★ 具有分佈式布拉格反射結構的砷化銦鎵/砷化銦鋁單光子崩潰二極體的特性分析
★ 改善載子傳輸之砷化銦鎵/砷化銦鋁平台式單光子崩潰二極體的設計與其特性★ 砷化銦鎵/磷化銦單光子雪崩型偵測器暗計數特性分析
★ 砷化銦鎵/砷化銦鋁單光子崩潰二極體 元件製作及適當電荷層濃度模擬分析★ 應用於單光子雪崩二極體之氮化鉭薄膜電阻器的特性探討
★ 砷化銦鎵/砷化銦鋁單光子崩潰二極體的設計與特性探討★ 砷化銦鎵/磷化銦單光子崩潰二極體暗與光特性分析
★ 砷化銦鎵/磷化銦單光子崩潰二極體正弦波 閘控模式之暗與光特性分析★ 砷化銦鎵/砷化銦鋁平台式雙累增層單光子崩潰二極體的設計與其特性
★ 考慮後段製程連線及佈局優化之積層型三維靜態隨機存取記憶體★ 鐵電場效電晶體記憶體考慮金屬功函數變異度之分析
★ 蝕刻深度對平台式雙累增層砷化銦鎵/砷化銦鋁單光子崩潰二極體之影響★ 應用於非揮發性鐵電靜態隨機存取記憶體之變異容忍性召回操作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來近紅外光單光子崩潰二極體(Single Photon Avalanche Diode, SPAD) 被廣為研究,其應用相當廣泛,可用於光纖通訊為基礎的量子通訊及量子電腦、電子產業的VLSI電路或是車用電子偵測系統等。其原理為將元件操作於崩潰電壓以上,光子被吸收後產生載子,並於高電場下獲取能量觸發衝擊游離,因此具有相當高的增益,遂可用來偵測極低強度的光。
將SPAD元件製作成多像素陣列,可提高偵測器動態偵測範圍(dynamic range)或實現成像相關之應用;為了提高偵測效率,陣列設計會盡可能縮小SPAD元件間的間距來提升密度,減少光子損失。當元件崩潰時所產生的光學串擾,會因為間距的微縮而影響相鄰元件的偵測,導致其他元件發生非預期之崩潰,而影響偵測的準確性。
在本論文中,我們量測出InGaAs/InAlAs APD所產生的Breakdown flash波長,並使用光學模擬軟體Rsoft的FullWAVE功能,用計算共振腔品質因子的方法延伸應用至模擬SPAD陣列中光學串擾現象,模擬陣列中breakdown flash傳遞至相鄰元件的能量密度,藉由此方法來比較不同陣列結構設計下,光學串擾對相鄰元件之影響是否如預期趨勢相同,並印證此模擬方法可用於模擬SPAD陣列光學串擾現象,我們亦進一步分析何種設計可以有效降低光學串擾。
摘要(英) In recent years, near infrared single photon avalanche diodes (SPAD) have many applications in various fields including optical fiber-based quantum communications and quantum computers, VLSI circuits in the electronics industry, or automotive electronic detection systems. A SPAD is reversely biased above the breakdown voltage and the absorption of single photon can trigger impact ionization process, resulting infinite number of carriers to detect faint light.
SPADs are made into a multi-pixel array to improve the detector dynamic range or enable imaging applications. To improve the detection efficiency, the distance between SPAD pixels should be minimized in order to increase the pixel density and hence reduce the photon loss. When the distance between each pixel is reduced, the breakdown flash generated by the avalanche carriers may travel to the nearby SPADs in the array, inducing unwanted avalanche events that would deteriorate the detection ability.
In this paper, we pay great effort to measure the emission spectrum of breakdown flash produced by InGaAs/InAlAs SPAD, and further substitute the emission spectrum into the simulation tool of FullWAVE in Rsoft to study the issue of optical crosstalk in the SPAD array by applying the method similar to the calculation of the decay of resonance mode in cavity. Based on the above method, we can calculate the energy density of breakdown flash propagation. The optical crosstalk can be well predicted under different conditions. We also further discuss the effectiveness of several designs that can help to reduce the optical crosstalk.
關鍵字(中) ★ 單光子雪崩二極體
★ 光學串擾
★ 砷化銦鎵 /砷化鋁銦
★ 崩潰閃光
關鍵字(英) ★ SPAD
★ Optical Crosstalk
★ breakdown flash
★ InGaAs/InAlAs
論文目次 摘要 ii
Abstract iii
致謝 iv
目錄 v
圖目錄 vii
表目錄 x
一、 緒論 1
1-1 前言 1
1-1-1 光電倍增管 3
1-1-2 光崩潰二極體 5
1-1-3 偵測波段與材料 7
1-1-4 單光子元件陣列與光學串擾之影響 8
1-2 研究動機與論文架構 13
二、 單光子雪崩二極體 14
2-1 元件物理 14
2-2 崩潰機制 16
2-3 Breakdown flash物理特性 18
三、 量測系統架構與結果 22
3-1 光路量測架構 22
3-2 Breakdown flash影像 25
3-3 Breakdown flash波長 28
四、 結構設計與模擬 31
4-1 Rsoft模擬軟體介紹 31
4-1-1 能量密度模擬方法 32
4-2 元件結構設計 36
4-3 模擬 42
4-3-1 DBR對數 42
4-3-2 光波長共振 47
4-3-3 改變陣列設計條件 52
五、 模擬結果分析與討論 56
六、 結論與未來展望 66
參考文獻 67
參考文獻 [1] Aurelio Ponz,et al. "Laser Scanner and Camera Fusion for Automatic Obstacle Classification in ADAS Application ", January 2016.
[2] C. Mathas. ADAS takes greater control in 2015.Available:
http://www.edn.com/design/automotive/4437761/ADAS-takes-greater-control-in-2015.
[3] Yoshikazu Takeda et al. "Electron mobility and energy gap of In0.53Ga0.47As on InP substrate " Journal of Applied Physics ,vol. 47, pp 5405, August, 1976.
[4] Xiao Meng. "InGaAs/InAlAs single photon avalanche diodes at 1550 nm and X-ray detectors using III-V semiconductor materials " The University of Sheffield, PhD dissertation, August 2015.
[5] H.Kyushima et al. "Photomultiplier Tube of New Dynode configuration " IEEE Transactions on nuclear science, vol. 41, no. 4. August 1994
[6] H. Bruining, "Physics and Application of Secondary Electron Emission " 1954.
[7] Wikipedia,Photomultiplier tube. Available: https://en.wikipedia.org/wiki/Photomultiplier_tube
[8] J. P. R. David and C. H. Tan. "Material Considerations for Avalanche Photodiodes " IEEE J. Sel. Top. Quant, vol. 14, pp. 998–1009, 2008.
[9] H. Ando et al. "Characteristics of germanium avalanche photodiodes in the wavelength region of 1–1.6 mm " IEEE J. Quantum. Electron, vol.QE-14, no. 11, pp. 804–809, Nov. 1978.
[10] K.Nishida et al. "InGaAsP heterostructure avalanche photodiodes with high avalanche gain " Applied Physics Letters, vol. 35, pp. 251-253, 1979.
[11] J.C. Campbell et al. "High-performance avalanche photodiode with separate absorption ‘grading’ and multiplication regions " Electronics Letters, vol.19, p.818, 1983.
[12] Lacaita et al. "Single-photon detection beyond 1 microm: performance of commercially available InGaAs/lnP detectors " Appl Opt, vol. 35, pp. 2986-96, Jun 1996.
[13] D. Stucki et al. "Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs " Journal of Modern Optics, vol. 48, pp. 1967-1981, 2001.
[14] S. Pellegrini et al. "Design and Performance of an InGaAs–InP Single-Photon Avalanche Diode Detector " IEEE Journal of Quantum Electronics, vol. 42, pp. 397-403, 2006.
[15] J. P. R. David and C. H. Tan. "Material Considerations for Avalanche Photodiodes " IEEE J. Sel. Top. Quant, vol. 14, pp. 998–1009, 2008.
[16] S. M. Sze and K. K. Ng. Physics of Semiconductor Devices, 3rd. Wiley, 2007.
[17] A. I. Nurhadi and N. R. Syambas, "Quantum Key Distribution (QKD) Protocols: A Survey " 2018 4th International Conference on Wireless and Telematics (ICWT), Nusa Dua, pp. 1-5, 2018.
[18] A. L. Lacaita, F. Zappa, S. Bigliardi and M. Manfredi, "On the bremsstrahlung origin of hot-carrier-induced photons in silicon devices, " in IEEE Transactions on Electron Devices, vol. 40, no. 3, pp. 577-582, March 1993.
[19] Ivan Rech, Antonino Ingargiola, Roberto Spinelli, Ivan Labanca, Stefano Marangoni, Massimo Ghioni, and Sergio Cova, "Optical crosstalk in single photon avalanche diode arrays: a new complete model " Opt. Express 16, pp. 8381-8394, 2008.
[20] N. Calandri, M. Sanzaro, L. Motta, C. Savoia and A. Tosi, "Optical Crosstalk in InGaAs/InP SPAD Array: Analysis and Reduction With FIB-Etched Trenches," in IEEE Photonics Technology Letters, vol. 28, no. 16, pp. 1767-1770, 15 Aug.15, 2016.
[21] Jandieri, K., Rubel, O., Baranovskii, S.D. et al. Lucky-drift model for impact ionization in amorphous semiconductors. J Mater Sci, Mater Electron 20, pp. 221–225, 2009.
[22] A. G. CHYNOWETH AND K. G. MCKAY Bell Telephone Laboratories, Murray Hill, Rem Jersey. "Photon Emission from Avalanche Breakdown in Silicon " Phys. Rev, vol. 102, pp. 369-376, April 1956.
[23] Jeff Bude, Nobuyuki Sano, and Akira Yoshii, "Hot-carrier luminescence in Si" Phys. Rev, vol. 45, pp. 5848-5856, March 1956.
[24] S. Pellegrini et al., "Design and performance of an InGaAs-InP single-photon avalanche diode detector " IEEE Journal of Quantum Electronics, vol. 42, no. 4, pp. 397-403, April 2006.
[25] Jack Jia-Sheng Huang, H. S. Chang, Yu-Heng Jan, C. J. Ni, H. S. Chen, and Emin Chou, "Temperature Dependence Study of Mesa-Type InGaAs/InAlAs Avalanche Photodiode Characteristics " Advances in OptoElectronics, vol 2017 Article,12 Jan 2017.
[26] Richard D. Younger, K. Alex McIntosh, Joseph W. Chludzinski, Douglas C. Oakley, Leonard J. Mahoney, Joseph E. Funk, Joseph P. Donnelly, and S. Verghese Lincoln Laboratory, "Crosstalk Analysis of Integrated Geiger-mode Avalanche Photodiode Focal Plane Arrays " Proc. SPIE 7320, Advanced Photon Counting Techniques III, 73200Q , 29 April 2009.
[27] Mingguo Liu et al. " Low Dark Count Rate and High Single-Photon Detection Efficiency Avalanche Photodiode in Geiger-Mode Operation" IEEE Photonics Technology Letters , vol 19 , Issue 6 , March15, 2007.
[28] Lenox, Cynthia et al. "Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290 GHz " IEEE Photonics Technology Letters, vol. 11, pp. 1162-1164, 1999.
[29] Mahdi Zavvari, Kambiz Abedi, and Mohammad Karimi, "Design of resonant cavity structure for efficient high-temperature operation of single-photon avalanche photodiodes," Appl. Opt. 53, pp. 3311-3317, 2014.
指導教授 李依珊(Yi-Shan Lee) 審核日期 2020-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明