博碩士論文 107521015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.147.68.159
姓名 梁承煒(Cheng-Wei Liang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 鐵電場效電晶體記憶體考慮金屬功函數變異度之分析
(Analysis of Work Function Variation for Ferroelectric FET Memory)
相關論文
★ 應用於非揮發性鐵電靜態隨機存取記憶體之變異容忍性召回操作★ 分析與設計低電壓操作之非揮發性鐵電場效電晶體記憶體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著物聯網(Internet of things, IoT)、人工智慧(Artificial Intelligence, AI)和邊緣運算(Edge Computing)的興起,高效能並具備低功耗之記憶體變成一個受歡迎的研究主題。使用二氧化鉿(HfO2)之鐵電場效電晶體(FeFET)具備了一些優點,例如低功率消耗、非揮發性(non-volatile)、微縮性(Scalability)和與CMOS製程相容等優勢,因此鐵電場效電晶體有望成為下一世代非揮發性記憶體之候選者。變異度一直都是所有元件所存在的議題,因為會影響到元件的效能。目前關於金屬功函數變異度對鐵電場效電晶體記憶體的影響,尚未有完整的研究,本論文將利用MATLAB考慮金屬晶粒之數量與位置波動,並且結合TCAD模擬,深入探討金屬功函數變異度及鐵電材料層之介電相-鐵電相分布,並分析對鐵電記憶體之高低阻態臨界電壓及記憶體視窗(Memory window)影響。
本論文研究鐵電記憶體元件考慮金屬功函數變異度之影響,研究結果顯示改變金屬閘極晶粒尺寸、閘極面積和鐵電參數對記憶體視窗變異度沒有顯著的影響,因為有相同的極化平移量(ΔP),但利用金屬閘極晶粒尺寸和閘極面積仍可以改善高和低臨界電壓變異度,改變金屬閘極晶粒尺寸從10 nm到2 nm,高臨界電壓變異度從53.7 mV變成15.6 mV,而低臨界電壓變異度從53.1 mV變成16.2 mV;閘極面積從Lg × W = 20 nm × 20 nm變為Lg × W = 35 nm × 35 nm,高臨界電壓變異度從23.8 mV變成16.6 mV,而低臨界電壓變異度從24.1 mV變成15.1 mV。
此外,本論文亦分析鐵電材料層之介電相-鐵電相分布之影響,當鐵電材料層包含鐵電相(正交晶系, Orthorhombic)和介電相(如四方晶系, Tetragonal、單斜晶系, Monoclinic)的非均勻分布時,將影響鐵電記憶體之記憶體視窗變異度。因此,我們分析金屬功函數變異度結合鐵電變異度(介電相-鐵電相分布)對鐵電電晶體的影響,當改變閘極面積從Lg × W = 20 nm × 20 nm變為Lg × W = 35 nm × 35 nm,記憶體視窗變異度從37.6 mV變為12.3 mV;當提升鐵電相比例從50%到75%,記憶體視窗變異度從37.6 mV變為13.9 mV,結果顯示當鐵電材料層有較高及均勻的鐵電相分布時,能改善其記憶體視窗變異度。
摘要(英) With the rise of the Internet of Things (IoT), Artificial Intelligence (AI) and Edge Computing, high performance and low power consumption memory have become popular research topics. Using hafnium dioxide (HfO2) on FeFET shows several advantages such as low power consumption, non-volatility, scalability, and CMOS compatibility, thus the FeFET has become a promising candidate for the next-generation non-volatile memory. Variability has always been an issue for all devices because it affects the device performance, however, the impact of work function variation for ferroelectric FET memory has rarely been examined. This thesis uses MATLAB considering the metal grain number and position fluctuation, and uses TCAD simulation to discuss the impact of work function variation for the high and low threshold voltage and memory window of ferroelectric FET memory.
Our thesis analyzes the impact of work function variation on FeFET memory. Our results show that changing the metal grain size, gate area, and ferroelectric parameters do not affect memory window variation (σMW) significantly due to the same ΔP. However, as the metal grain size reduces and the gate area increases, the high and low threshold voltage variations caused by work function variation can be improved. As the metal grain size reduces from 10 nm to 2 nm, the high threshold voltage variation changes from 53.7 mV to 15.6 mV, and the low threshold voltage variation changes from 53.1 mV to 16.2 mV. As the gate area increases from Lg × W = 20 nm × 20 nm to Lg × W = 35 nm × 35 nm, the high threshold voltage variation changes from 23.8 mV to 16.6 mV, and the low threshold voltage variation changes from 24.1 mV to 15.1 mV.
In addition, when the FE grains (orthorhombic phase) are not uniformly distributed, and there exists tetragonal and monoclinic phases that may form dielectric (DE) as high-k oxide, the non-uniform dielectric-ferroelectric (DE-FE) phase distributions will affect the memory window variations. Therefore, we analyze the combined effects of work function variation and ferroelectric variation (DE-FE phase distribution) on the FeFET memory. Our results show that as the gate area increases from Lg × W = 20 nm × 20 nm to Lg × W = 35 nm × 35 nm, σMW changes from 37.6 mV to 12.3 mV. As the ferroelectric percentage increases from 50% to 75%, the σMW changes from 37.6 mV to 13.9 mV. Our results show that the σMW can be improved by increasing the percentage of FE phase.
關鍵字(中) ★ 鐵電材料
★ 非揮發性記憶體
★ 鐵電場效電晶體
★ 金屬功函數變異度
★ 介電相-鐵電相分布
★ 金屬閘極晶粒尺寸
★ 閘極面積
★ 鐵電相比例
關鍵字(英) ★ Ferroelectric material
★ non-volatile memory
★ ferroelectric FET
★ work function variation (WFV)
★ dielectric-ferroelectric (DE-FE) phase distribution
★ metal grain size
★ gate area
★ percentage of FE phase
論文目次 摘要 I
Abstract III
致謝 V
目錄 VII
圖目錄 IX
表目錄 XXI
第一章 導論 1
1.1 文獻回顧 1
1.2 背景與相關研究 21
1.2.1 鐵電記憶體的分類 24
1.2.2 鐵電材料 25
1.2.3 鐵電場效電晶體的操作 27
1.3 鐵電場效電晶體之記憶體視窗 29
1.4 Preisach Model介紹 30
1.5 研究動機 33
1.6 論文架構 34
第二章 金屬功函數變異度對鐵電場效電晶體的影響 35
2.1 前言 35
2.2 元件結構與模擬參數 36
2.3 金屬功函數變異度(Work Function Variation) 38
2.4 變異度的模擬流程 40
2.5 絕緣層上矽場效電晶體 41
2.5.1 金屬閘極晶粒尺寸 41
2.5.2 閘極面積 45
2.6 鐵電場效電晶體 49
2.6.1 金屬閘極晶粒尺寸 49
2.6.2 閘極面積 62
2.6.3 鐵電參數 76
2.7 比較WFV和WFV結合DE-FE分布 89
2.7.1 金屬閘極晶粒尺寸 89
2.7.2 閘極面積 101
2.7.3 鐵電相比例 111
第三章 總結 118
參考文獻 120
參考文獻 [1] H. Lee and P. Su, "Suppressed Fin-LER Induced Variability in Negative Capacitance FinFETs," IEEE Electron Device Letters, vol. 38, no. 10, pp. 1429-1495, Oct. 2017, doi: 10.1109/LED.2017.2737025.
[2] M. Y. Kao et al., "Variation Caused by Spatial Distribution of Dielectric and Ferroelectric Grains in a Negative Capacitance Field-Effect Transistor," IEEE Transactions on Electron Devices, vol. 65, no 10, pp. 4652-4658, Oct. 2018, doi: 10.1109/TED.2018.2864971.
[3] V. P. Hu, P. Chiu and Y. Lu, "Impact of Work Function Variation, Line-Edge Roughness, and Ferroelectric Properties Variation on Negative Capacitance FETs," IEEE Journal of the Electron Devices Society, vol. 7, pp. 295-302, 2019, doi: 10.1109/JEDS.2019.2897286.
[4] K. Ni, W. Chakraborty, J. Smith, B. Grisafe and S. Datta, "Fundamental Understanding and Control of Device-to-Device Variation in Deeply Scaled Ferroelectric FETs," 2019 Symposium on VLSI Technology, 2019, pp. T40-T41, doi: 10.23919/VLSIT.2019.8776497.
[5] Y. Liu and P. Su, "Variability Analysis for Ferroelectric FET Nonvolatile Memories Considering Random Ferroelectric-Dielectric Phase Distribution," IEEE Electron Device Letters, vol. 41, no. 3, pp. 369-372, March 2020, doi: 10.1109/LED.2020.2967423.
[6] S. Dünkel et al., "A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond," 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017, pp. 19.7.1-19.7.4, doi: 10.1109/IEDM.2017.8268425.
[7] Y. Lee and C. Shin, "Impact of Equivalent Oxide Thickness on Threshold Voltage Variation Induced by Work-Function Variation in Multigate Devices," IEEE Transactions on Electron Devices, vol. 64, no. 5, pp. 2452-2456, May 2017, doi: 10.1109/TED.2017.2673859.
[8] K. Ni et al., "Impact of Extrinsic Variation Sources on the Device-to-Device Variation in Ferroelectric FET," 2020 IEEE International Reliability Physics Symposium (IRPS), 2020, pp. 1-5, doi: 10.1109/IRPS45951.2020.9128323.
[9] Y. S. Liu and P. Su, "Impact of Trapped-Charge Variations on Scaled Ferroelectric FET Nonvolatile Memories," IEEE Transactions on Electron Devices, vol. 68, no. 4, pp. 1639-1643, April 2021, doi: 10.1109/TED.2021.3061330.
[10] K. Florent et al., "Vertical Ferroelectric HfO2 FET based on 3-D NAND Architecture: Towards Dense Low-Power Meomory," 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2018, pp. 2.5.1-2.5.4, doi: 10.1109/IEDM.2018.8614710.
[11] N. Gong and T. Ma, "A Study of Endurance Issues in HfO2-Based Ferroelectric Field Effect Transistors: Charge Trapping and Trap Generation," IEEE Electron Devices Letters, vol. 39, no. 1, pp. 15-18, Jan. 2018, doi: 10.1109/LED.2017.2776263.
[12] I.R. Committee, "International Roadmap for Devices and Systems," 2016 Edition. More Moore white paper.
[13] M. Lapedus, "FeFETs are a promising next-gen memory based on well-understood material," 2018, https://semiengineering.com/a-new-memory-contender/.
[14] J. Müller et al., "Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG," 2012 Symposium on VLSI Technology (VLSIT), 2012, pp. 25-26, doi: 10.1109/VLSIT.2012.6242443.
[15] J. Müller et al., "Ferroelectric Hafnium Oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories," 2013 IEEE International Electron Devices Meeting, 2013, pp. 10.8.1-10.8.4, doi: 10.1109/IEDM.2013.6724605.
[16] T. Ali et al., "A Multilevel FeFET Memory Device based on Laminated HSO and HZO Ferroelectric Layers for High-Density Storage," 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 28.7.1-28.7.4, doi: 10.1109/IEDM19573.2019.8993642.
[17] J. S. Meena, S. M. Sze, U. Chand and T.-Y. Tseng, "Overview of emerging nonvolatile memory technologies," Nanoscale Research Letters, vol. 9, no. 526, 2014, doi:10.1186/1556-276X-9-526.
[18] J. Wu et al., "Adaptive Circuit Approaches to Low-Power Multi-Level/Cell FeFET Memory," 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), 2020, pp. 407-413, doi: 10.1109/ASP-DAC47756.2020.9045106.
[19] A. I. Khan, A. Keshavarzi, S. Datta, "The future of ferroelectric field-effect transistor technology," Nature Electronics, vol. 3, pp. 588–597, 2020. https://doi.org/10.1038/s41928-020-00492-7.
[20] T. P. Ma and N. Gong, "Retention and Endurance of FeFET Memory Cells," 2019 IEEE 11th International Memory Workshop (IMW), 2019, pp. 1-4, doi:10.1109/IMW.2019.8739726.
[21] M. Trentzsch et al., "A 28nm HKMG super low power embedded NVM technology based on ferroelectric FETs," 2016 IEEE International Electron Devices Meeting (IEDM), 2016, pp. 11.5.1-11.5.4, doi: 10.1109/IEDM.2016.7838397.
[22] K. Ni et al., "Critical Role of Interlayer in Hf0.5Zr0.5O2 Ferroelectric FET Nonvolatile Memory Performance," IEEE Transactions on Electron Devices, vol. 65, no. 6, pp. 2461-2469, June 2018, doi: 10.1109/TED.2018.2829122.
[23] T. Mikolajick et al., "Next Generation Ferroelectric Memories enabled by Hafnium Oxide," 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp. 15.5.1-15.5.4, doi: 10.1109/IEDM19573.2019.8993447.
[24] J. Valasek, "Piezo-Electric and Allied Phenomena in Rochelle Salt," Physical Review, vol. 17, pp. 475–481, 1921, doi:10.1103/physrev.17.475.
[25] E. Yurchuk et al., "Impact of Scaling on the Performance of HfO2-Based Ferroelectric Field Effect Transistors," IEEE Transactions on Electron Devices, vol. 61, no. 11, pp. 3699-3706, Nov. 2014, doi: 10.1109/TED.2014.2354833.
[26] T. Mikolajick, U. Schroeder and S. Slesazeck, "The Past, the Present, and the Future of Ferroelectric Memories," IEEE Transactions on Electron Devices, vol. 67, no. 4, pp. 1434-1443, April 2020, doi: 10.1109/TED.2020.2976148.
[27] T. S. Böscke et al., "Ferroelectricity in hafnium oxide thin films," Applied Physics Letters, vol. 99, no. 10, pp. 102903, May 2011, https://doi.org/10.1063/1.3634052.
[28] J. Müller et al., "Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications," Applied Physics Letters, vol. 99, no. 11, pp. 112901, 2011, https://doi.org/10.1063/1.3636417.
[29] N. Gong and T. Ma, "Why Is FE–HfO2 More Suitable Than PZT or SBT for Scaled Nonvolatile 1-T Memory Cell? A Retention Perspective," IEEE Electron Device Letters, vol. 37, no. 9, pp. 1123-1126, Sept. 2016, doi: 10.1109/LED.2016.2593627.
[30] J. Muller et al., "Nanosecond Polarization Switching and Long Retention in a Novel MFIS-FET Based on Ferroelectric HfO2," IEEE Electron Device Letters, vol. 33, no. 2, pp. 185-187, Feb. 2012, doi: 10.1109/LED.2011.2177435.
[31] B. Moyer, "New technology could have an impact on NVM, in-memory processing, and neuromorphic computing," 2021, https://semiengineering.com/fefets-bring-promise-and-challenges/.
[32] M. H. Park et al., "Ferroelectricity and Antiferroelectricity of Doped Thin HfO2-Based Films," Advanced Materials, vol. 27, no. 11, pp. 1811–1831, Feb. 2015, https://doi.org/10.1002/adma.201404531.
[33] S. Salahuddin and S. Datta, "Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices," Nano Letters, vol. 8, no. 2, pp. 405–410, 2008, https://doi.org/10.1021/nl071804g.
[34] V. P. Hu, P. Chiu, A. B. Sachid and C. Hu, "Negative capacitance enables FinFET and FDSOI scaling to 2 nm node," 2017 IEEE International Electron Devices Meeting (IEDM), 2017, pp. 23.1.1-23.1.4, doi: 10.1109/IEDM.2017.8268443.
[35] D. Kwon et al., "Improved Subthreshold Swing and Short Channel Effect in FDSOI n-Channel Negative Capacitance Field Effect Transistors," IEEE Electron Device Letters, vol. 39, no. 2, pp. 300-303, Feb. 2018, doi: 10.1109/LED.2017.2787063.
[36] M. A. Alam, M. Si, P. D. Ye, "A critical review of recent progress on negative capacitance field-effect transistors," Applied Physics Letters, vol. 114, pp. 090401, https://doi:10.1063/1.5092684.
[37] M. Jerry et al., "Ferroelectric FET analog synapse for acceleration of deep neural network training," 2017 IEEE International Electron Devices Meeting (IEDM), 2017, pp. 6.2.1-6.2.4, doi: 10.1109/IEDM.2017.8268338.
[38] K. Ni, M. Jerry, J. A. Smith and S. Datta, "A Circuit Compatible Accurate Compact Model for Ferroelectric-FETs," 2018 IEEE Symposium on VLSI Technology, 2018, pp. 131-132, doi: 10.1109/VLSIT.2018.8510622.
[39] K. Ni et al., "SoC Logic Compatible Multi-Bit FeMFET Weight Cell for Neuromorphic Applications," 2018 IEEE International Electron Devices Meeting (IEDM), 2018, pp. 13.2.1-13.2.4, doi: 10.1109/IEDM.2018.8614496.
[40] U. Schroeder et al., "Impact of field cycling on HfO2 based non-volatile memory devices," 2016 46th European Solid-State Device Research Conference (ESSDERC), Lausanne, pp. 364-368, 2016, doi:10.1109/essderc.2016.7599662.
[41] T. Mikolajick, S. Slesazeck, M. H. Park, and U. Schroeder, "Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors," MRS Bulletin, vol. 43, no. 5, pp. 340–346, 2018, doi:10.1557/mrs.2018.92.
[42] Sentaurus TCAD, O-2018-6 Manual.
[43] B. Jiang et al., "Computationally Efficient Ferroelectric Capacitor Model for Circuit Simulation," 1997 Symposium on VLSI Technology, Kyoto, 1997, pp. 141-142, doi: 10.1109/VLSIT.1997.623738.
[44] Hang-Ting Lue, Chien-Jang Wu and Tseung-Yuen Tseng, "Device modeling of ferroelectric memory field-effect transistor (FeMFET)," IEEE Transactions on Electron Devices, vol. 49, no. 10, pp. 1790-1798, Oct. 2002, doi: 10.1109/TED.2002.803626.
[45] H. Mulaosmanovic et al., "Novel ferroelectric FET based synapse for neuromorphic systems," 2017 Symposium on VLSI Technology, 2017, pp. T176-T177, doi: 10.23919/VLSIT.2017.7998165.
[46] Y. Long et al., "A Ferroelectric FET-Based Processing-in-Memory Architecture for DNN Acceleration," IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 5, no. 2, pp. 113-122, Dec. 2019, doi: 10.1109/JXCDC.2019.2923745.
[47] H. F. Dadgour, K. Endo, V. K. De and K. Banerjee, "Grain-Orientation Induced Work Function Variation in Nanoscale Metal-Gate Transistors—Part I: Modeling, Analysis, and Experimental Validation," IEEE Transactions on Electron Devices, vol. 57, no. 10, pp. 2504-2514, Oct. 2010, doi: 10.1109/TED.2010.2063191.
[48] E. P. Gusev et al., "Ultrathin high-K gate stacks for advanced CMOS devices," International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224), 2001, pp. 20.1.1-20.1.4, doi: 10.1109/IEDM.2001.979537.
[49] S. Datta et al., "High mobility Si/SiGe strained channel MOS transistors with HfO2/TiN gate stack," IEEE International Electron Devices Meeting 2003, 2003, pp. 28.1.1-28.1.4, doi: 10.1109/IEDM.2003.1269365.
[50] H. F. Dadgour, K. Endo, V. K. De and K. Banerjee, "Grain-Orientation Induced Work Function Variation in Nanoscale Metal-Gate Transistors—Part II: Implications for Process, Device, and Circuit Design," IEEE Transactions on Electron Devices, vol. 57, no. 10, pp. 2515-2525, Oct. 2010, doi: 10.1109/TED.2010.2063270.
[51] S. Chou, M. Fan and P. Su, "Investigation and Comparison of Work Function Variation for FinFET and UTB SOI Devices Using a Voronoi Approach," IEEE Transactions on Electron Devices, vol. 60, no. 4, pp. 1485-1489, April 2013, doi: 10.1109/TED.2013.2248087.
[52] H. Dadgour, V. De and K. Banerjee, "Statistical modeling of metal-gate Work-Function Variability in emerging device technologies and implications for circuit design," 2008 IEEE/ACM International Conference on Computer-Aided Design, 2008, pp. 270-277, doi: 10.1109/ICCAD.2008.4681585.
[53] Y. S. Liu and P. Su, "Variability Analysis for FeFET NVMs Considering Ferroelectric-Dielectric Phase Distribution," 2019 International Conference on Solid State Devices and Materials, Nagoya, 2019, pp. 377-378.
[54] A. Robin et al., "Effects of TiN Top Electrode Texturing on Ferroelectricity in Hf1-xZrxO2," ACS Appl. Mater. Interfaces, vol. 13, no. 9, pp. 11089-11095, February 2021, doi: 10.1021/acsami.1c01734.
指導教授 胡璧合 李依珊(Vita Pi-Ho Hu Yi-Shan Lee) 審核日期 2021-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明