博碩士論文 107521017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:52.23.219.12
姓名 陳智偉(Chih-Wei Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
(Design and Fabrication of GaN Schottky Barrier Diodes and High Electron Mobility Transistors)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體
★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析★ 氮化鋁鎵/氮化鎵高電子遷移率電晶體之佈局分析及功率放大器研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文探討製作於氮化鎵基板以及矽基板之氮化鎵功率元件,根據不同之基板類型,分成以下兩個部分討論: (1)整合垂直式的蕭特基二極體與水平式的高電子遷移率電晶體於氮化鎵基板之研究;(2)具挖洞式歐姆接觸的高電子遷移率電晶體於矽基板之研究。本研究包含元件的設計、TCAD模擬、製作與電性分析。
對於氮化鎵基板之功率元件,藉由氮離子佈植形成電流阻擋層,製作具有圓形和環形通道的垂直式氮化鎵蕭特基二極體,佈植能量及劑量分別為150/100 keV與1 × 10^15 cm^-2;電流阻擋層能夠將通道與高臺(mesa)邊緣分離,減少蝕刻損傷造成的影響以及反向偏壓下的邊緣效應,從而降低元件的漏電流並且提高崩潰電壓。此外,環形通道可以形成電流擴散,因此相較於具有圓形通道之蕭特基二極體,具有環形通道之蕭特基二極體的導通電阻會比較小,其崩潰電壓以及導通電阻分別為956 V與1.13 mΩ∙cm^2,巴利加優值(Baliga figure of merit, BFOM)為808.79 MW/cm^2。另外,水平式的氮化鎵/氮化鋁鎵高電子遷移率電晶體也可以與垂直式GaN蕭特基二極體一起同時完成,達成單片整合之設計。氮化鎵/氮化鋁鎵高電子遷移率電晶體的導通電阻與飽和電流分別為8.5 Ω‧mm (在VGS = 0 V,VDS = 0.2 V的條件下)與588.4 mA/mm (在VGS = 2 V,VDS = 10 V的條件下)。
對於矽基板之功率元件,藉由在歐姆接觸區域進行不同圖形與不同深度的挖洞,製作具有挖洞式歐姆接觸的氮化鎵/氮化鋁鎵高電子遷移率電晶體。在挖洞深度以及挖洞圖形為5.5 nm與1/3/5 μm的條件下,其特徵接觸電阻為7.1 × 10-7 Ω∙cm^2,大約比傳統無挖洞之歐姆接觸低一個數量級;並以此條件製作具挖洞式歐姆接觸之高電子遷移率電晶體,其導通電阻為14.6 Ω‧mm (在VGS = 0 V,VDS = 0.2 V的條件下),比傳統HEMT小了約11%。
摘要(英) In this study, the GaN power devices fabricated on GaN substrates and silicon substrates are discussed. According to different substrate types, it is divided into the following two parts for discussion: (1) Integrating vertical Schottky diodes (SBDs) and lateral AlGaN/GaN high-electron-mobility transistors (HEMTs) on GaN substrates; (2) HEMTs with recessed ohmic contacts on silicon substrates.
For the devices on GaN substrates, vertical SBDs using nitrogen ion implantation to form the circle and donut channels are proposed. Nitrogen ion with a energy of 100/150 keV and dose of 1 × 10^15 cm^-2 is used to form a current blocking layer to separate the channel from the mesa edge to reduce the etching damage and edge effect under reverse bias. The leakage current is reduced in the SBD with the donut channel thus improve the breakdown voltage. The specific differential ON-resistance (diff. RON, sp) is also improved in the SBD with a donut channel due to the wider current spreading than that in the SBD with a circle channel. A GaN SBD with the 2 μm donut channel and floating metal ring shows the diff. RON,sp of 1.13 mΩ∙cm^2 and the breakdown voltage of 956 V, with the Baliga’s Figure-Of-Merit (BFOM) of 808.79 MW/cm^2. In addition, AlGaN/GaN HEMTs can be fabricated simultaneously with vertical GaN SBDs to achieve monolithic integration. The on-resistance and saturation current of AlGaN/GaN HEMTs are 8.5 Ω‧mm (at VGS = 0 V, VDS = 0.2 V) and 588.4 mA/mm (at VGS = 2 V, VDS = 10 V) respectively.
For the devices on silicon substrates, AlGaN/GaN HEMTs with various recessed depths and recessed patterns in the ohmic region are investigated. As the recessed depth and recessed pattern is 5.5 nm and 1/3/5 μm, the specific contact resistivity of 7.1 × 10-7 Ω∙cm^2 is achieved, which is about an order of magnitude lower than that of traditional fabrication strategy without recessed. The recessed ohmic contact HEMT (ROC HEMT) exhibits the on-resistance of 14.6 Ω‧mm (at VGS = 0 V and VDS = 0.2 V), which is 11 % lower than that of the conventional HEMT.
關鍵字(中) ★ 氮化鎵
★ 功率元件
★ 高電子遷移率電晶體
★ 垂直式蕭特基二極體
★ 單片整合
★ 歐姆接觸
關鍵字(英) ★ GaN
★ power device
★ High Electron Mobility Transistors
★ Vertical Schottky Barrier Diodes
★ monolithic integration
★ Ohmic contact
論文目次 摘要......i
Abstract........ii
致謝......iii
目錄......iv
圖目錄....vii
表目錄....xiii
第一章 緒論......1
1.1 前言........1
1.2 AlGaN/GaN異質結構.....3
1.3 AlGaN/GaN HEMTs與SBDs之單片整合技術發展概況.....5
1.4 GaN SBDs發展概況......7
1.4.1 水平式GaN SBDs......9
1.4.2 垂直式GaN SBDs......10
1.5 AlGaN/GaN HEMTs發展概況.......16
1.5.1 再生長式歐姆接觸.....18
1.5.2 挖洞式歐姆接觸.......20
1.6 研究動機與目的.........23
1.7 論文架構......24
第二章 HEMT結構磊晶層於GaN基板及矽基板之磊晶結構與材料分析.....25
2.1 前言.........25
2.2 HEMT結構磊晶層於GaN基板之磊晶結構.......25
2.3 HEMT結構磊晶層於矽基板之磊晶結構........26
2.4 HEMT結構磊晶層於GaN基板與矽基板之材料分析........28
2.4.1 傳輸線模型量測.......28
2.4.2 霍爾量測....29
2.4.3 原子力顯微鏡量測.....30
2.4.4 蝕刻孔洞密度量測.....31
2.4.5 X-光繞射儀量測......32
2.4.6 垂直崩潰電壓量測.....34
2.4.7 水平崩潰電壓量測.....36
2.5 本章總結......39
第三章 單片整合垂直式SBDs與AlGaN/GaN HEMTs於GaN基板.........40
3.1 前言.........40
3.2 元件佈局設計..40
3.2.1 AlGaN/GaN垂直式SBDs之佈局設計........41
3.2.2 AlGaN/GaN HEMTs之佈局設計...43
3.3 垂直式SBDs與AlGaN/GaN HEMTs之製作流程..44
3.4 元件電性模擬結果.......47
3.5 電容-電壓特性之量測結果........52
3.6 常溫之電性量測結果.....54
3.6.1 垂直式GaN SBDs之電性分析.....54
3.6.2 AlGaN/GaN HEMTs之電性分析...65
3.7 變溫之電性量測結果.....68
3.7.1 順向導通特性分析.....68
3.7.2 反向漏電流特性分析...74
3.8 本章總結......78
第四章 具挖洞式歐姆接觸之AlGaN/GaN HEMTs....79
4.1 前言.........79
4.2 元件佈局設計..79
4.2.1 挖洞式歐姆接觸之佈局設計......80
4.2.2 AlGaN/GaN HEMTs之佈局設計...82
4.3 AlGaN/GaN HEMTs製作流程.......83
4.4 元件電性模擬結果.......86
4.5 元件電性量測結果.......90
4.5.1 歐姆接觸電阻分析.....91
4.5.2 直流特性分析........92
4.5.3 動態特性分析........99
4.6 本章總結......105
第五章 結論.......107
參考文獻.........108
附錄 Ⅰ 製作於GaN基板之垂直式SBDs與AlGaN/GaN HEMTs的製作流程..117
附錄 Ⅱ 製作於矽基板之AlGaN/GaN HEMTs的製作流程..............120
參考文獻 [1] J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan, “An assessment of wide bandgap semiconductors for power devices,” IEEE Trans. on Power Electronics, vol. 18, no. 3, pp. 907-914, May 2003, doi: 10.1109/TPEL.2003.810840.
[2] S. J. Pearton , J. Yang, P. H. Cary , F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, “ A review of Ga2O3 materials, processing, and devices,” Appl. Phys. Rev., vol. 5, no. 1, Jan. 2018, doi: 10.1063/1.5006941.
[3] L. F. S. Alves, R. C. M. Gomes, P. Lefranc, R. D. A. Pegado, P. O. Jeannin, B. A. Luciano, and F. V. Rocha, “SIC power devices in power electronics: An overview,” 2017 Brazilian Power Electron. Conf. (COBEP), Juiz de Fora, Nov. 2017, pp. 1-8, doi: 10.1109/COBEP.2017.8257396.
[4] Yole Developpement, “Power GaN 2019: Epitaxy, Devices, Applications & Technology Trends report,” Nov. 2019 [Online]. Available: http://www.yole.fr/iso_album/illus_power_gan_marketevolution_yole_nov2019.jpg
[5] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222–3233, Mar. 1999, doi: 10.1063/1.371866.
[6] F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 450-457, Mar. 2001, doi: 10.1109/16.906435.
[7] Y. Zhang, J. Hu, M. Sun, D. Piedra, N. Chowdhury, and T. Palacios, “The 2018 GaN power electronics roadmap,” J. Phys. D: Appl. Phys., vol 51, no. 16, pp. 163001, Mar. 2018, doi: 10.1088/1361-6463/aaaf9d.
[8] Y. Zhang, M. Sun, Z. Liu, D. Piedra, H. S. Lee, F. Gao, T. Fujishima, and T. Palacios, “Electrothermal Simulation and Thermal Performance Study of GaN Vertical and Lateral Power Transistors,” IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2224-2230, July 2013, doi: 10.1109/TED.2013.2261072.
[9] P Kruszewski, P Prystawko, I Kasalynas, A Nowakowska-Siwinska, M Krysko, J Plesiewicz, J Smalc-Koziorowska, R Dwilinski, M Zajac, R Kucharski, and M Leszczynski, “AlGaN/GaN HEMT structures on ammono bulk GaN substrate,” Semicond. Sci. Technol., vol. 29, no. 7, Apr. 2014, doi:10.1088/0268-1242/29/7/075004.
[10] N. Kaminski and O.Hilt, “SiC and GaN Devices-Wide Bandgap is not all the same,” IET Circuits Devices Syst., Vol. 8, Iss. 3, pp.227-236, May 2014, doi: 10.1049/iet-cds.2013.0223.
[11] D. Christy, T. Egawa, Y. Yano, H. Tokunaga, H. Shimamura,Y. Yamaoka, A. Ubukata, T. Tabuchi, and K. Matsumoto, “Uniform Growth of AlGaN/GaN High Electron Mobility Transistors on 200 mm Silicon (111) Substrate,” Appl. Phys. Express, vol.6, no. 2, Jan. 2013, doi: 10.7567/APEX.6.026501.
[12] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, and T. Ogura, “600V AlGaN/GaN power-HEMT: design, fabrication and demonstration on high voltage DC-DC converter,” IEDM Tech. Dig., Washington, DC, USA, 2003, pp. 23.7.1-23.7.4, doi: 10.1109/IEDM.2003.1269351.
[13] W. Saito, T. Nitta, Y. Kakiuchi, Y. Saito, K. Tsuda, I. Omura, and M.Yamaguchi, “A 120-W Boost Converter Operation Using a High-Voltage GaN-HEMT,” IEEE Electron Device Lett., vol. 29, no. 1, pp. 8-10, Jan. 2008, doi: 10.1109/LED.2007.910796.
[14] W. Chen, K. Wong, and K. J. Chen, “Monolithic integration of lateral field-effect rectifier with normally-off HEMT for GaN-on-Si switch-mode power supply converters,” IEDM Tech. Dig., San Francisco, CA, 2008, pp. 1-4, doi: 10.1109/IEDM.2008.4796635.
[15] K. J. Chen, “Recent Development in GaN‐on‐Si Power Electronics‐all‐GaN integration and MISFET Technology,” International Workshop on Nitride Semiconductors(IWN 2018), Kanazawa, Japan, Nov. 2018.
[16] H. Yu and T. Duan, Gallium Nitride Power Devices, 1st ed. Pan Stanford Pub., 2017, ch.2.
[17] M. Ueno, S. Yoshimoto, K. Ishihara, M. Okada, K. Sumiyoshi, H. Hirano, F. Mitsuhashi, Y. Yoshizumi, T. Ishizuka, and M. Kiyama, “Fast recovery performance of vertical GaN Schottky barrier diodes on low-dislocation-density GaN substrates,” IEEE Int. Symp. Power Semicond. Devices IC’s, Waikoloa, HI, 2014, pp. 309-312, doi: 10.1109/ISPSD.2014.6856038.
[18] H. Ohta, K. Hayashi, F. Horikiri, M. Yoshino, T. Nakamura, and T. Mishima, “5.0 kV breakdown-voltage vertical GaN p–n junction diodes,” Jpn. J. Appl. Phys., vol. 57, pp. 04FG09-1–04FG09-4, Feb. 2018, doi: 10.7567/JJAP.57.04FG09.
[19] T. Maeda, H. Ueda, M. Kanechika, T. Uesugi, T. Kachi, T. Kimoto, M. Horita, and J. Suda, “Parallel-plane breakdown fields of 2.8-3.5 MV/cm in GaN-on-GaN p-n junction diodes with double-side-depleted shallow bevel termination,” IEDM Tech. Dig., San Francisco, CA USA, Dec. 2018, pp. 30.1.1–30.1.4, doi: 10.1109/IEDM.2018.8614669.
[20] M. R. Peart and J. J. Wierer, “Edge Termination for III-Nitride Vertical Power Devices Using Polarization Engineering,” IEEE Trans. Electron Devices, vol. 67, no. 2, pp. 571-575, Feb. 2020, doi: 10.1109/TED.2019.2958485.
[21] S. C. Lee, M. W. Ha, J. C. Her, S. S. Kim, J. Y. Lim, K. S. Seo, and M. K. Han, “High breakdown voltage GaN Schottky barrier diode employing floating metal rings on AlGaN/GaN hetero-junction,” Int. Symp. Power Semicond. Devices ICs, Santa Barbara, CA, May 2005, pp. 247-250, doi: 10.1109/ISPSD.2005.1487997.
[22] E. Bahat-Treidel, O. Hilt, R. Zhytnytska, A. Wentzel, C. Meliani, J. Würfl, and G. Tränkle, “Fast-Switching GaN-Based Lateral Power Schottky Barrier Diodes With Low Onset Voltage and Strong Reverse Blocking,” IEEE Electron Device Lett., vol. 33, no. 3, pp. 357-359, Mar. 2012, doi: 10.1109/LED.2011.2179281.
[23] A. P. Zhang, J. W. Johnson, B. Luo, F. Ren, S. J. Pearton, and J.-I. Chyi, “Vertical and lateral GaN rectifiers on free-standing GaN substrates,” Appl. Phys. Lett., vol. 79, no. 10, pp. 1555-1557, Sep. 2001, doi: 10.1063/1.1400771.
[24] Y. Saitoh, K. Sumiyoshi, M. Okada, T. Horii, T. Miyazaki, H. Shiomi, M. Ueno, K. Katayama, M. Kiyama, and T. Nakamura, “Extremely Low On-Resistance and High Breakdown Voltage Observed in Vertical GaN,” Appl. Phys. Express, vol. 3, no. 8, Jul. 2010, doi: 10.1143/APEX.3.081001.
[25] T. Oka, “Recent development of vertical GaN power devices,” Jpn. J. Appl. Phys., vol. 58, Apr. 2019, doi: 10.7567/1347-4065/ab02e7.
[26] Y. Zhang, M. Sun, Z. Liu, D. Piedra, M. Pan, X. Gao, Y. Lin, A. Zubair, L. Yu, and T. Palacios, “Novel GaN trench MIS barrier Schottky rectifiers with implanted field rings,” IEDM Tech. Dig., San Francisco, CA, 2016, pp. 10.2.1-10.2.4, doi: 10.1109/IEDM.2016.7838386.
[27] Y. Zhang, Z. Liu, M. J. Tadjer, M. Sun, D. Piedra, C. Hatem, T. J. Anderson, L. E. Luna, A. Nath, A. D. Koehler, H. Okumura, J. Hu, X. Zhang, X. Gao, B. N. Feigelson, K. D. Hobart, and T. Palacios, “Vertical GaN Junction Barrier Schottky Rectifiers by Selective Ion Implantation,” IEEE Electron Device Lett., vol. 38, no. 8, pp. 1097-1100, Aug. 2017, doi: 10.1109/LED.2017.2720689.
[28] S. Han, S. Yang and K. Sheng, “High-Voltage and High-ION/IOFF Vertical GaN-on-GaN Schottky Barrier Diode With Nitridation-Based Termination,” IEEE Electron Device Lett., vol. 39, no. 4, pp. 572-575, April 2018, doi: 10.1109/LED.2018.2808684.
[29] K. Han, “Employing hole-array recess of barrier layer of AlGaN/GaN Heterostructures to reduce annealing Temperature of Ohmic contact,” Semicond. Sci. Technol., vol. 32, no. 10, pp. 105010, Sep. 2017, doi: 10.1088/1361-6641/aa867f.
[30] A. Shriki, R. Winter, Y. Calahorra, Y. Kauffmann, G. Ankonina, M. Eizenberg, and D. Ritter, “Formation mechanism of gold-based and gold-free ohmic contacts to AlGaN/GaN heterostructure field effect transistors,” J. Appl. Phys., vol. 121, no. 6, pp. 065301, Feb. 2017, doi: 10.1063/1.4975473.
[31] M. Higashiwaki, S. Chowdhury, B. L. Swenson, and U. K. Mishra, “Effects of oxidation on surface chemical states and barrier height of AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 97, no. 22, pp. 222104-1–222104-3, Nov. 2010, doi: 10.1063/1.3522649.
[32] H.-Y. Guo, Y.-J. Lv, G.-D. Gu, S.-B. Dun, Y.-L. Fang, Z.-R. Zhang, X. Tan, X.-B. Song, X.-Y. Zhou, and Z.-H. Feng, “High-Frequency AlGaN/GaN High-Electron-Mobility Transistors with Regrown Ohmic Contacts by Metal-Organic Chemical Vapor Deposition,” Chin. Phys. Lett., vol. 32, no. 11, pp. 118501-1-118501-3, Nov. 2015, doi: 10.1088/0256-307X/32/11/118501.
[33] B. Song, M. Zhu, Z. Hu, M. Qi, K. Nomoto, X. Yan, Y. Cao, D. Jena, and H. G. Xing, “Ultralow-Leakage AlGaN/GaN High Electron Mobility Transistors on Si With Non-Alloyed Regrown Ohmic Contacts,” IEEE Electron Device Lett., vol. 37, no. 1, pp. 16-19, Jan. 2016, doi: 10.1109/LED.2015.2497252.
[34] Y. Takei, M. Kamiya, K. Tsutsui, W. Saito, K. Kakushima, H. Wakabayashi, Y. Kataoka, and H. Iwai, “Reduction of contact resistance on AlGaN/GaN HEMT structures introducing uneven AlGaN layers,” Phys. Status Solidi A, vol. 212, no. 5, pp. 1104-1109, Feb. 2015, doi: 10.1002/pssa.201431645.
[35] Y. Lu, X. Ma, L. Yang, B. Hou, M. Mi, M. Zhang, J. Zheng, H. Zhang, and Y. Hao, “High RF Performance AlGaN/GaN HEMT Fabricated by Recess-Arrayed Ohmic Contact Technology,” IEEE Electron Device Lett., vol. 39, no. 6, pp. 811-814, Jun. 2018, doi: 10.1109/LED.2018.2828860.
[36] J. Zhang, X. Kang, X. Wang, S. Huang, C. Chen, K. Wei, Y. Zheng, Q. Zhou, W. Chen, B. Zhang, and X. Liu, “Ultralow-Contact-Resistance Au-Free Ohmic Contacts With Low Annealing Temperature on AlGaN/GaN Heterostructures,” IEEE Electron Device Lett., vol. 39, no. 6, pp. 847-850, June 2018, doi: 10.1109/LED.2018.2822659.
[37] J Chen, J F Wang, H Wang, J J Zhu, S M Zhang, D G Zhao, D S Jiang, H Yang, U Jahn, and K H Ploog, “Measurement of threading dislocation densities in GaN by wet chemical etching,” Semicond. Sci. Technol., vol. 21, no. 9, pp. 1229-1235, Jul. 2006, doi: 10.1088/0268-1242/21/9/004.
[38] B. N. Pantha, R. Dahal, M. L. Nakarmi, N. Nepal, J. Li, J. Y. Lin, H. X. Jiang, Q. S. Paduano, and D. Weyburne, “Correlation between optoelectronic and structural properties and epilayer thickness of AlN,” Appl. Phys. Lett., Vol. 90, pp. 241101-1-241101-3, May 2007, doi: 10.1063/1.2747662.
[39] J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, and J. S. Speck, “Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates,” Appl. Phys. Lett., vol. 81, pp. 79-81, Jun. 2002, doi: 10.1063/1.1490147.
[40] M A Moram and M E Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys., vol. 72, no. 3, pp. 036502, Feb. 2009, doi:10.1088/0034-4885/72/3/036502.
[41] I. B. Rowena, S. L. Selvaraj, and T. Egawa, “Buffer Thickness Contribution to Suppress Vertical Leakage Current With High Breakdown Field (2.3 MV/cm) for GaN on Si,” IEEE Electron Device Lett., vol. 32, no. 11, pp. 1534-1536, Nov. 2011, doi: 10.1109/LED.2011.2166052.
[42] D. Visalli, M. V. Hovea, P. Srivastavaa, D. Marcona, K. Geensa, X. Kanga, E. Vandenplasa, J. Viaenea, M. Leysa, K. Chenga, B. Sijmusa, S. Decouterea, and G. Borghsa, “GaN-on-Si For High-Voltage Applications,” ECS Trans., vol. 41, no. 8, pp. 101-112, Jan. 2011, doi: 10.1149/1.363148.
[43] ATLAS User′s Manual, 2016, [online] Available: www.silvaco.com.
[44] Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, N. M. Williams, A. Hanser, and E. A. Preble, “Temperature-dependent electrical characteristics of bulk GaN Schottky rectifier,” J. Appl. Phys., Vol. 101, No. 2, pp. 024506-024506-4, Jan. 2007, doi: 10.1063/1.2425004.
[45] Y. Cao, R. Chu, R. Li, M. Chen, and A. J. Williams, “Improved performance in vertical GaN Schottky diode assisted by AlGaN tunneling barrier,” Appl. Phys. Lett., vol. 108, no. 11, pp. 112101, Mar. 2016, doi: 10.1063/1.4943946.
[46] M. A. Laurent, G. Gupta, D. J. Suntrup III, S. P. DenBaars, and U. K. Mishra, “Barrier height inhomogeneity and its impact on (Al,In,Ga)N Schottky diodes,” J. Appl. Phys., Vol. 119, No. 6, pp. 064501-064501-7, February 2016, doi: 10.1063/1.4941531.
[47] F. Iucolano, F. Roccaforte, F. Giannazzo, and V. Raineri, “Barrier inhomogeneity and electrical properties of Pt/GaN Schottky contacts,” J. Appl. Phys., Vol. 102, No. 11, pp. 113701-113701-8, Dec. 2007, doi: 10.1063/1.2817647.
[48] Z. Tekeli, Ş. Altındal, M. Çakmak, S. Özçelik, D. Çalışkan, and E. Özbay, “The behavior of the I-V-T characteristics of inhomogeneous Ni/Au-Al0.3Ga0.7N/AlN/GaN heterostructures at high temperatures,” J. Appl. Phys., Vol. 102, No. 5, pp. 054510-054510-8, Sep. 2007, doi: 10.1063/1.2777881.
[49] S. Turuvekere, N. Karumuri, A. A. Rahman, A. Bhattacharya, A. DasGupta, and N. DasGupta, “Gate Leakage Mechanisms in AlGaN/GaN and AlInN/GaN HEMTs: Comparison and Modeling,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3157-3165, Oct. 2013, doi: 10.1109/TED.2013.2272700.
[50] H. Zhang, E. J. Miller, and E. T. Yua, “Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N/GaN grown by molecular-beam epitaxy,” J. Appl. Phys., vol. 99, pp. 023703-054510-6, Jonuary 2006, doi: 10.1063/1.2159547.
[51] K. R. Peta and M. D. Kim, “Leakage current transport mechanism under reverse bias in Au/Ni/GaN Schottky barrier diode,” Superlattices Microstruct., vol. 113, pp. 678-683, December 2017, doi: 10.1016/j.spmi.2017.11.056.
[52] A. Y. Polyakov and I. Lee, “Deep traps in GaN-based structures as affecting the performance of GaN devices,” Mater. Sci. Eng., vol. 94, pp. 1-56, Aug. 2015, doi: 10.1016/j.mser.2015.05.001.
[53] D. Bisi, M. Meneghini, C. d. Santi, A. Chini, M. Dammann, P. Brückner, M. Mikulla, G. Meneghesso, and E. Zanoni, “Deep-Level Characterization in GaN HEMTs-Part I: Advantages and Limitations of Drain Current Transient Measurements,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3166-3175, Oct. 2013, doi: 10.1109/TED.2013.2279021.
[54] B. Benakaprasad, A. M. Eblabla, X. Li, K. G. Crawford, and K. Elgaid, “Optimization of Ohmic Contact for AlGaN/GaN HEMT on Low-Resistivity Silicon,” IEEE Trans. Electron Devices, vol. 67, no. 3, pp. 863-868, March 2020, doi: 10.1109/TED.2020.2968186.
[55] L. Wang, F. M. Mohammed, and I. Adesida, “Differences in the reaction kinetics and contact formation mechanisms of annealed Ti/Al/Mo/Au ohmic contacts on n-GaN and AlGaN/GaN epilayers,” J. Appl. Phys., vol. 101, no. 1, pp. 013702, Jan. 2007, doi: 10.1063/1.2402791.
[56] C. Wang, S.-J. Cho, and N.-Y. Kim, “Optimization of ohmic contact metallization process for AlGaN/GaN high electron mobility transistor,” Trans. Electr. Electron. Mater., vol. 14, no. 1, pp. 32–35, Feb. 2013, doi: 10.4313/TEEM.2013.14.1.32.
[57] G. Greco, F. Iucolano, and F. Roccaforte, “Ohmic contacts to Gallium Nitride materials,” Appl. Surf. Sci., vol. 383, pp.324-345, Oct. 2016, doi: 10.1016/j.apsusc.2016.04.016.
[58] Z. Tang, S. Huang, Q. Jiang, S. Liu, C. Liu, and K. J. Chen, “High-Voltage (600-V) Low-Leakage Low-Current-Collapse AlGaN/GaN HEMTs with AlN/SiNx Passivation,” IEEE Electron Device Lett., vol. 34, no. 3, pp. 366-368, Mar. 2013, doi: 10.1109/LED.2012.2236638.
[59] H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, and U. K. Mishra, “High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates,” IEEE Electron Device Lett., vol. 25, no. 4, pp. 161-163, Apr. 2004, doi: 10.1109/LED.2004.824845.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明