博碩士論文 107521021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:109 、訪客IP:18.223.172.199
姓名 施杰忱(Jie-Chen Shih)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於光無線通訊之高速、高亮度、高效率940nm光波段垂直共振腔面射型雷射陣列
(High-Speed, High-Brightness, and High-Efficiency 940nm Vertical-Cavity Surface-Emitting Lasers Array For Free-Space Optical Communications)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本論文中,會探討940nm波段之垂直共振腔面射型雷射(VCSEL)的陣列製程設計及操作,與傳統的VCSEL陣列結構不同,我們將陣列中的各個Mesa以波導的形式互相連結,此外也透過鋅擴散與氧化掏離的技術來套用在傳統以及有波導的VCSEL陣列結構中,可以實現具有高亮度(單模態)的輸出以及能有效降低元件面積增加所造成的RC頻寬劣化。
與傳統無波導的陣列相比,證明了有波導的陣列有更高的Wall plug效率、更大的輸出功率以及更好的眼圖品質,能夠顯著的改善資料傳輸,並且保持狹窄的發散角(半高寬FWHM:~6o),我們所製作出的3×3 VCSEL陣列元件可達到在110mA時功率為50mW,發散角之半高寬(FWHM)為8o,在Data rate為10 Gbit/s時有清晰的眼圖傳輸以及頻寬能夠達到10GHz。
VCSEL在單模操作下,通常會有電洞燒盡(spatial hole burning)效應,這是導致單模態VCSEL陣列靜態與動態特性的主要瓶頸,而我們所設計之光波導VCSEL陣列的優異特性可歸因於在陣列中每顆VCSEL的單模態輸出模式中,高光子密度透過孔徑與孔徑之間的波導連接所稀釋而使得特性可提升。而這種新穎的有波導之高速、高亮度940nm波段VCSEL陣列具有強大的潛力,可以更為有效地應用於光無線通訊系統中。
摘要(英) A novel structure of VCSEL array for high-efficiency, high-speed, and high brightness performances have been demonstrated. In contrast to the traditional VCSEL arrays, which have several independent VCSEL cavities in parallel, here the array structure we demonstrate has additional passive optical waveguides to connect each cavity. In addition, the Zn-diffusion and oxide-relief structures are adopted in each single element in the array to have high-brightness (single mode) output and relax its RC-limited bandwidth.
As compared to the single mode (SM) reference without waveguide connections in the array, the demonstrated array can have significant improvements in terms of higher wall plug efficiency (WPE), larger maximum output power, better quality of eye opening for high-speed data transmission, and keep at the same narrow divergence angle (full-width half-maximum: ~6o). Our VCSEL device can achieve output power 50mW, divergence angle (FWHM) 8o at 110mA. We can get clear eye pattern at 10Gbit/s data rate and E-O bandwidth achieve 10GHz in 3×3 array.
These superior performances of demonstrated array can be attributed to that the high photon density in the SM output pattern from each VCSEL unit is diluted through the connected passive waveguides between different apertures. The reduction in photon density for SM operation can thus release the spatial hole burning effect, which is usually the major bottleneck for static and dynamic performances of SM VCSEL array. This novel high-speed and high-brightness 940 nm VCSEL has strong potential to serve as a light source in free-space optical communication.
關鍵字(中) ★ 垂直共振腔面射型雷射
★ 高速垂
★ 高亮度
★ 高效率
★ 光無線通訊用VCSEL
★ 940nm光波段
關鍵字(英) ★ VCSEL
★ High-Speed
★ High-Brightness
★ High-Efficiency
★ Free-Space Optical Communications
★ 940nm wavelength
論文目次 目錄
摘要......1
Abstract......2
致謝......3
Acknowledgement......5
目錄......I
圖目錄......IV
表目錄......XII
第一章 序論......1
1-1 簡介......1
1-2 光無線傳輸及通訊衛星......4
1-3 垂直共振腔面射型雷射(VCSEL) 簡介......9
1-4 面射型雷射的電流侷限......11
1-5 VCSEL之氧化層結構......13
第二章 實驗理論......16
2-1 940 nm波段VCSEL晶片之磊晶結構......16
2-2 LandMark 940nm波段磊晶結構......19
2-3 VCSEL的選擇性濕氧化原理......22
2-4 水氧層掏離製作......25
2-5 高速、高亮度及高功率VCSEL陣列製作......27
2-6 水氧氧化系統......33
2-7 IR CCD系統......34
2-8 發散角......35
第三章 實驗流程......37
3-1 鋅擴散 (Zn diffusion)......37
3-2 水氧氧化製程......41
3-3 製作電極 (P Metal 和 N Metal)......45
3-4 Passivation and Via Hole Opening......48
3-5 平坦化(PI製程)......49
3-6 PAD金屬......50
第四章 實驗結果及探討......51
4-1 量測系統簡介......51
4-1-1 電流對電壓(I-V)的量測......51
4-1-2 光功率對電流(L-I)之量測......52
4-1-3 遠場(FFP Far Field Pattern)量測系統......52
4-1-4 頻寬(Bandwidth)之量測系統......53
4-1-5 頻譜(Spectrum)之量測系統......54
4-1-6 眼圖(Eye Pattern)量測系統......54
4-2 IET 940nm波段VCSEL陣列結構圖......56
4-3 頻譜(Spectrum)、遠場發散角(Far Field Pattern, FFP)量測......61
4-4 光功率-電流-電壓(L-I-V)曲線及Wall Plug Efficiency (WPE)......61
4-5 IET940 nm光波段之量測概述表......63
4-6 IET940 9μm水氧孔徑之頻譜、遠場發散角、LIV及WPE......66
4-7 IET940 12μm水氧孔徑之頻譜、遠場發散角、LIV及WPE......71
4-8 IET940 15μm水氧孔徑之頻譜、遠場發散角、LIV及WPE......75
4-9 IET940 E-O頻寬(Bandwidth)量測......81
4-10 IET940大訊號眼圖(Eye Pattern)量測......87
4-11 LM 940 VCSEL陣列元件量測結果......89
4-12 LM940之3×3陣列與IET940之3×3陣列比較......90
第五章 結論及未來探討......93
第六章 Reference......94
參考文獻 [1] P. Shubert, A. Cline, J. McNally, R. Pierson, “System Design of Low SWaP Optical Terminals for Free Space Optical Communications,” Proc. SPIE, Free-Space Laser Communication and Atmospheric Propagation XXIX, vol. 10096, Feb., 2017
[2] N. Haghighi, P. Moser and J. A. Lott, “Power, Bandwidth, and Efficiency of Single VCSELs and Small VCSEL Arrays,” IEEE J. Sel. Topics. Quantum Electronics., vol. 25, no. 6, pp. 1-15, Nov.-Dec., 2019
[3] J. Skidmore, “Semiconductor Lasers for 3-D Sensing,” Opt. & Photonics. News, pp. 28-33, Feb., 2019.
[4] J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE, Vertical-Cavity Surface Emitting Lasers XII, vol. 6908, pp. 690808, Jan., 2008
[5] R. F. Carson, M. E. Warren, P. Dacha, T. Wilcox, J. G. Maynard, David J. Abell, and K. J. Otis, “Progress in High-Power, High-Speed VCSEL Arrays,” Proc. SPIE, Vertical-Cavity Surface Emitting Lasers XX, vol. 9766, pp. 97660B, Mar., 2016
[6] Morgan, Rachel, “Nanosatellite Lasercom System,” Internet: https://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=0&article=3653&context=smallsat&type=additional, Aug., 2017
[7] R. F. Carson, E. W. Taylor, A. H. Paxton, H. Schone, K. D. Choquette, H. Q. Hou, M. E. Warren, and K. L. Lear, ‘‘Surface-emitting laser technology and its application to the space radiation environment,’’ Proc. SPIE, Advancement of Photonics for Space: A Critical Review, vol. 10288, Jul., 1997.
[8] P. M. Goorjian, “A New Laser Beam Pointing Method Using Laser Arrays,” Proc. SPIE, Free-Space Laser Communications XXXI, vol. 10910 Mar., 2019.
[9] Jin-Wei Shi, F.-M. Kuo, T.-C. Hsu, Ying-Jay Yang, Andrew Joel, Mark Mattingley, and Jen-Inn Chyi, “The Monolithic Integration of GaAs–AlGaAs-Based Unitraveling-Carrier Photodiodes With Zn-Diffusion Vertical-Cavity Surface-Emitting Lasers With Extremely High Data Rate/Power Consumption Ratios,” IEEE Photonics Tech. Lett., vol. 21, no. 19, Oct., 2009
[10] Zuhaib Khan, Jie-Chen Shih, Yung-Hao Chang and Jin-Wei Shi, “High-Brightness and High-Speed Coherent VCSEL Array,” in Proc. Conf. on Lasers and Electro-Optics, Washington, D. C., USA, May., 2020
[11] S. Nakagawa, D. Kuchta, C. Schow, R John, A. Larry. Coldren,Yu-Chia Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” in Proc. OFC 2008, pp. OThS3, San Diego, CA, Feb., 2008
[12] W. W. Chow, K. D. Choquette, M. H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE of Quantum Electronics., vol. 33, no. 10, pp. 1810-1824, Oct.,1997.
[13] K. D. Choquette and H. Q. Hou, “Vertical-cavity surface emitting laser: Moving from research to manufacturing,” Proc. IEEE, vol. 85, no. 11, pp. 1730-1739, Nov., 1997.
[14] Y-C chang, L. A. Coldrem, “Efficient, High-data-rate Tapered oxide-aperture VCSELs using multiple oxide layer,” IEEE J. of Quantum Electronics, vol. 15, no.3, pp.704-715, May., 2009.
[15] Y. Mohammad “Optimizing Optical output power of single-mode vcsels using multiple oxide layer,” IEEE J. of Quantum Electronics, vol. 19, no. 4, pp. 1701708-1701708, July., 2013.
[16] 顏志成,“具有超低耗能,傳輸資料比值在850nm波段超高速(40Gbit/s)面射型雷射,”國立中央大學研究所論文(民國101)
[17] R. W. Herrick, A. Dafinca, P. Farthouat, A. A. Grillo, “Corrosion-Based Failure of Oxide-aperture VCSELs,” IEEE J. of Quantum Electronics, vol. 49, no. 12, pp. 1045-1052, Dec., 2013.
[18] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang et al., “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fibre,” Electron. Lett., vol. 26, no. 19, pp. 1628-1629, Sep., 1990.
[19] Y. J. Yang, T. G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting laser,”, Soc. Photo-opt., vol. 1418, pp. 414-421, Nov., 1991.
[20] Y. J. Yang, T. G. Dziura, R. Frenandez, S. C. Wang, G. Du, and S. Wang, “Low threshold operation of a GaAs single quantum well mushroom structure surface emitting laser,” Appl. Phys. Lett., vol. 58, no. 16, pp. 1780-1782, Apr., 1991.
[21] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” IEEE J. Appl. Phys., vol. 36, no.12, pp. 3770-3778, Dec., 1965.
[22] K. Nakajima, “Calculation of stresses in InxGa1−xAs/InP strained multilayer heterostructures,” J. Appl. Phys., vol. 72, no. 11, pp. 5213-5219, Dec., 1992.
[23] K. D. Choquette, K. M. Geib, I. H. Carol, Ashby, Ray D. Twesten, Olga Blum, Hong Q. Hou, David M. Follstaedt, B. Eugene Hammons, Dave Mathes, and Robert Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE J. Sel. Topics In Quantum Electron., vol. 3, no. 3, pp.916-926, Jun., 1997.
[24] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and R. Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers,” IEEE Photon. Tech. Lett., vol. 7, no.11, pp.1237-1239, Nov., 1995.
[25] N. Hplonyak, Jr., and J. M. Dallesasse, “Dependence on doping type (p/n) of the water vapor oxidation of high‐gap AlxGa1-xAs ,” Appl. Phys. Lett., vol. 60, no. 25, pp. 3165-3167, Jun., 1992.
[26] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett., vol. 69, no. 10, pp.1385-1387, Sep., 1996.
[27] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol.12, pp. 64840J-1-64840J-12, Feb., 2007.
[28] R. S. Geel, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized Vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 2, no. 4, pp. 234-236, Apr., 1990.
[29] A. Haglund, J. S. Gustavsson, J. Vukuˇsic´, P. Modh, and A. Larsson, Member, IEEE, “Single Fundamental-Mode Output Power Exceeding 6mW from VCSELs with a Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 368-370, Feb., 2004.
[30] Rashid Safaisini, Student Member, IEEE, John R. Joseph, and Kevin L. Lear, “Scalable High-CW-Power High-Speed 980-nm VCSEL Arrays,” IEEE J. of Quantum Electronics., vol. 46, no. 11, Nov., 2010.
[31] Jia-Liang Yen, Xin-Nan Chen, Kai-Lun Chi, Jason (Jyehong) Chen, and Jin-Wei Shi, “850 nm Vertical-cavity Surface-emitting Laser Arrays with Enhanced High-speed Transmission Performance over a Standard Multi-mode Fiber,” IEEE J. of Lightwave Technol., vol. 35, no. 15, pp. 3242-3249, Aug., 2017.
[32] A. Haglund, J. S. Gustavsson, P. Modh, Member, IEEE, and A. Larsson, “Dynamic Mode Stability Analysis of Surface Relief VCSELs Under Strong RF Modulation,” IEEE Photon. Technol. Lett., vol. 17, no. 8, pp.1602-1604, Aug., 2005.
[33] A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett., vol. 85, no. 22, Nov., 2004.
[34] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol 8, no.6 pp.740-742, Jun., 1996.
[35] M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-free transmission Over 1-km OM4 multimode fiber at 25 Gb/susing a single mode photonic crystal vertical-cavity surface-emitting laser,” IEEE Photon. Technol. Lett., vol. 25, no.18, pp. 1823-1825, Sep., 2013.
[36] Y. Liu, W.-C. Ng, B. Klein, and K. Hess, “Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity-surface-emitting lasers,” IEEE J. Quantum Electron., vol. 39, no. 1, pp. 99-108, Jan., 2003.
[37] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, “Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation,” IEEE Photon. Technol. Lett., vol. 13, pp. 927-929, Sep., 2001.
[38] Hermann A. Haus, “Waves and Fields in Optoelectronics,” Prentice-Hall, 1984.
[39] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, Chihping Kuo, and Ying-Jay Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photonics. Technol. Lett., vol. 20, no. 13, pp. 1121-1123, Jul., 2008.
[40] Fumio Koyama, Fellow, IEEE, and Xiaodong Gu, Student, “Beam Steering, Beam Shaping, and Intensity Modulation Based on VCSEL Photonics,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 19, no. 4, pp. 1701510-1701510, Aug., 2013.
[41] Weng W. Chow, Kent D. Choquette, Mary H. Crawford, Kevin L. Lear, and G. Ronald Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers”, J. Quantum Electron., 33, pp. 1810-1824, Oct., 1997.
[42] M. E. Warren, P. L. Gourley, G. R. Hadley, G. A. Vawter, T. M. Brennan, B. E. Hammons, and K. L. Lear, “On-axis far-field emission from two-dimensional phase-locked vertical cavity surface-emitting laser arrays with an integrated phase-corrector, “Appl. Phys. Lett., vol. 61, no. 13, pp. 1484-1488, Sep., 1992.
[43] M. Orenstein, E. Kapon, J. P. Harbison, L. T. Florez, and N. G. Stoffel,” Large two-dimensional arrays of phase-locked vertical cavity surface emitting lasers,” Appl. Phys. Lett., vol. 60, no. 13, pp. 1535-1537, Mar., 1992.
[44] R. J. E. Taylor, D. T. D. Childs, P. Ivanov, B. J. Stevens, N. Babazadeh, A. J. Crombie, G. Ternent, S. Thoms, H. Zhou & R. A. Hogg, “Electronic control of coherence in a two-dimensional array of photonic crystal surface emitting lasers,” Nature Scientific Reports., Aug., 2015.
[45] Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, highspeed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett., vol. 43, no. 19, pp. 1022–1023, Sep., 2007.
[46] L.A. Coldren, S.W. Corzine, “Chapter 5. Dynamic Effects,” in Diode Lasers and Photonic Integrated Circuits, pp 257-266, Oct., 1995.
[47] J. S. Gustavsson, A. Haglund, J. Bengtsson, P. Modh, and A. Larsson, “Dynamic behavior of fundamental-mode stabilized VCSELs using shallow surface relief,” IEEE J. Quantum Electron., vol. 40, no. 6, pp. 607–619, Jun., 2004.
[48] R. Safaisini, K. Szczerba, E. Haglund, P. Westbergh, J. S. Gustavsson, A. Larsson, and P. A. Andrekson, “20 Gbit/sec error-free operation of 850 nm oxide-confined VCSELs beyond 1 km of multimode fibre,” Electron. Lett., vol. 48, no. 29, pp. 1225-1227, Sep., 2012.
[49] Zuhaub Khan, Nikolay Ledentsov, JR., Lukasz Chorchos, Jie-Chen Shih, Yung-Hao Chang, Nikolay N. Ledentsov, and Jin-Wei Shi, “Single-Mode 940 nm VCSELs With Narrow Divergence Angles and High-Power Performances for Fiber and Free-Space Optical Communications” IEEE Access, vol. 8, pp. 72095-72101, Apr., 2020.
[50] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,” Appl. Phys. Lett., vol. 66, no. 14, pp.1723-1725, Apr., 1995.
[51] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr., and K. M. Geib, “Cavity characteristics of selectively oxidized vertical-cavity lasers,” Appl. Phys. Lett., vol. 66, no. 25, pp.3413-3415, Jun., 1995.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2020-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明