博碩士論文 107521025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:18.218.218.230
姓名 劉祐麟(Yu-Lin Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 改善載子傳輸之砷化銦鎵/砷化銦鋁平台式單光子崩潰二極體的設計與其特性
(Design and Characteristics of Mesa-type InGaAs/InAlAs Single-Photon Avalanche Diodes with Reduced Carrier Transport Time)
相關論文
★ 應用自差分電路對具有不同擊穿電壓之多層累增層的砷化銦鎵/砷化銦鋁之單光子雪崩二極體性能影響★ 砷化銦鎵/砷化鋁銦單光子崩潰二極體陣列 之光學串擾模擬
★ 改變電荷層摻雜濃度之砷化銦鎵/砷化銦鋁單光子累增二極體的特性探討★ 具有分佈式布拉格反射結構的砷化銦鎵/砷化銦鋁單光子崩潰二極體的特性分析
★ 在砷化銦鎵 /砷化鋁銦單光子崩潰二極體中崩潰閃光引致光學串擾之探討★ 砷化銦鎵/磷化銦單光子雪崩型偵測器暗計數特性分析
★ 砷化銦鎵/砷化銦鋁單光子崩潰二極體 元件製作及適當電荷層濃度模擬分析★ 應用於單光子雪崩二極體之氮化鉭薄膜電阻器的特性探討
★ 砷化銦鎵/砷化銦鋁單光子崩潰二極體的設計與特性探討★ 砷化銦鎵/磷化銦單光子崩潰二極體暗與光特性分析
★ 砷化銦鎵/磷化銦單光子崩潰二極體正弦波 閘控模式之暗與光特性分析★ 砷化銦鎵/砷化銦鋁平台式雙累增層單光子崩潰二極體的設計與其特性
★ 考慮後段製程連線及佈局優化之積層型三維靜態隨機存取記憶體★ 鐵電場效電晶體記憶體考慮金屬功函數變異度之分析
★ 蝕刻深度對平台式雙累增層砷化銦鎵/砷化銦鋁單光子崩潰二極體之影響★ 應用於非揮發性鐵電靜態隨機存取記憶體之變異容忍性召回操作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 三五族單光子崩潰二極體(Single-Photon avalanche Diode, SPAD) 能夠偵測到近紅外光並具有單光子偵測的能力,因此被廣泛應用在醫療、軍事、量子通訊、車用安全等。以車輛安全系統為例,元件做為Time of flight (TOF) 接收器,其光子偵測效率和時間特性直接影響車用系統的安全距離判斷精確率,因此本研究針對吸收層加入部分摻雜之特殊設計降低載子在元件內部漂移時間以改善元件時間特性,並改進元件製程來降低暗計數。
我們的砷化銦鎵/砷化銦鋁SPAD被製作成圓形檯面,以提供側向電場限制並避免邊緣擊穿,我們研究了不同的蝕刻溶液,以改善側壁的粗糙度,從而減少表面缺陷。我們在蝕刻後進一步採用了硫化工藝以修復表面缺陷,這有助於減少器件的洩漏電流。最後,在器件上沉積了SixNy層作為鈍化層,以保護器件並保持硫化效果。
我們的SPAD的崩潰電壓在275K時為32.84 V,溫度係數為10.53 mV / K,在90%崩潰電壓之下漏電流為1.236×10−3 (A/cm2) ,其中已優化蝕刻液元件的漏電流比未優化蝕刻液的漏電流低3個數量級,僅比乾蝕刻高1個數量級。在237.5 K的溫度下測得的最低暗計數率為17%,SPAD的最短延遲時間約為120 ns,其中後脈衝率小於1%。但是,在這樣的溫度下,我們的SPAD表現出極低的光子靈敏度。當溫度升高到287.5 K時,暗計數率為26%,光子檢測效率為1.4%在過量偏壓為1.5%時。在室溫下過量偏壓為2%時,時間特性(也稱為抖動)達到164ps。
摘要(英) III-V Single-photon avalanche diode (SPAD) can detect near-infrared light and have the ability of single-photon detection. Therefore, it is widely used in medical, military, quantum communications, vehicle safety, etc. Taking the vehicle safety system as an example, the SPAD device is used as a time of flight (TOF) receiver. The photon detection efficiency and timing performance directly affect the accuracy of the safety distance judgment of the vehicle system. Therefore, this study focuses on improving timing performance by introducing partially doped region to the absorption layer. Such design reduces carrier drift time inside the device structure so as to improve timing performance. At the same time, we also fabricate the device with delicate process for reducing dark count rate.
lateral electric field confinement as well as to avoid the edge breakdown. We examine different etching solutions to improve the roughness of the side walls and hence to reduce the surface defects. We further incorporate the vulcanization process after etching to fix the surface defects, which helps to reduce the leakage current of the device. Finally, A SixNy layer was deposited on the device as a passivation layer to protect the device and maintain the vulcanization effect.
The breakdown voltage of our SPAD is 32.84 V at 275K and the temperature coefficient is 10.53 mV/K. The leakage current is 1.236×10−3 (A/cm2) at 90% breakdown voltage, where the leakage current of optimized device is 3 orders of magnitude lower than that of without optimizing the etching solution, and it is only 1 order of magnitude higher than that using dry etching. The lowest dark count probability of 17 % was measured at the temperature of 237.5K. The III shortest hold-off time for our SPAD is around 120 ns where the afterpulsing probability is less than 1 %. However, at such temperature, our SPAD exhibits extremely low photon sensitivity. When the temperature is increased to 287.5K, the dark count probability is 26% and the photon detection efficiency is 1.5% for the excess bias of 1.4%. The timing performance, which is also known as jitter, reaches 164ps when the excess bias is 2% at room temperature.
關鍵字(中) ★ 砷化銦鎵/砷化銦鋁
★ 單光子崩潰二極體
★ 時基誤差
關鍵字(英) ★ InGaAs/InAlAs
★ Single-Photon Avalanche Diodes
★ Jitter
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 x
目錄
第一章緒論 1
1.1. 單光子偵測元件 1
1.1.1. 光電倍增管 1
1.1.2. 單光子崩潰二極體 2
1.2. 研究動機 2
1.3. 論文架構 4
第二章單光子崩潰二極體 5
2.1. 元件操作原理 5
2.1.1. 元件工作區域 5
2.1.2. 崩潰機制 7
2.2. 材料偵測波段 9
2.3. 元件操作與截止電路 10
2.3.1. 閘控模式(Gated mode) 10
2.3.2. 自由運行模式(Free running mode) 11
2.4. 參數介紹 13
2.4.1. 暗計數 13
2.4.2. 光子偵測效率 15
2.4.3. 時基誤差 16
第三章元件製程 17
3.1. 元件結構 17
3.2. 蝕刻液選擇 20
3.3. 元件製程 23
3.1.1. 晶圓切割與清洗 23
3.1.2. 平台蝕刻 23
3.1.3. 硫化處理 24
3.1.4. Contact金屬化製程 24
3.1.5. 側壁保護層 25
3.1.6. 乾蝕刻製程 27
3.1.7. PAD金屬化製程 27
3.1.8. 元件切割與打線 29
第四章量測系統與參數計算 30
4.1. 降溫系統介紹 30
4.2. 降溫量測介紹I-V 31
4.3. 時基誤差系統介紹 32
4.4. 後脈衝量測介紹 33
4.5. 暗計數量測介紹 34
4.6. 光計數量測介紹 35
第五章量測結果與分析 37
5.1. 室溫電流-電壓量測 37
5.2. 變溫電流電壓量測 38
5.3. 變溫暗計數量測 44
5.4. 光計數量測 48
5.5. 後脈衝量測 50
5.6. 時基誤差量測 51
第六章結論與未來展望 54
第七章參考文獻 57
參考文獻 [1] F. Villa et al. "SPAD Smart Pixel for Time-of-Flight and Time-Correlated Single-Photon Counting Measurements." in IEEE Photonics Journal, vol. 4, Issue 3, pp. 795-804, 2012.
[2] Yingjie Ma, Yonggang Zhang, Yi Gu, Xingyou Chen, Yanhui Shi, Wanyan Ji, Suping Xi, Ben Du, Xiaoliang Li, Hengjing Tang, Yongfu Li, and Jiaxiong Fang. "Impact of etching on the surface leakage generation in mesa-type InGaAs/InAlAs avalanche photodetectors." OSA publishing, Vol. 24, Issue 7, pp. 7823-7834, 2016.
[3] T. Hakamata. "Photomultiplier Tubes Basics and Application." 3rd, Hamamatsu Photonics K.K., 2006.
[4] S. J. Pearton, C. R. Abernathy, F. Ren. "Topics in Growth and Device Processing of III-V Semiconductors." World Scientific, pp. 265-267, 1996.
[5] M.R. Ravi, Amitava DasGupta and Nandita DasGupta. "Silicon nitride and polyimide capping layers on InGaAs/InP PIN photodetector after sulfur treatment." Journal of Crystal Growth, vol. 268, pp. 359–363, 2004.
[6] MicroChem Corp. "LOR™ Lift-Off Resists." pp. 3, 2002.
[7] Xiao Meng. "InGaAs/InAlAs single photon avalanche diodes at 1550 nm and X-ray detectors using III-V semiconductor materials." The University of Sheffield, PhD dissertation, August 2015.
[8] Shiyu Xie. "Design and characterisation of InGaAs high speed photodiodes, InGaAs/InAlAs avalanche photodiodes and novel AlAsSb based avalanche photodiodes." The University of Sheffield, PhD dissertation, March 2012.
[9] J. Z. Zheng, D. Tan, P. Chew, and L. Chan. "Characterization and in-line control of UV-transparent silicon nitride films for passivation of FLASH devices," SPIE Proceedings, vol. 2876, pp. 63-70, October 1996.
[10] Lee et al. "Characterization of UV Transparent Films for FLASH Devices." DCMIC Conference, pp. 81-88, February 2002.
[11] S. Wolf, R. N. Tauber. "Silicon Processing for the VLSI Era—vol. 1—Process Technology." Lattice Press, pp. 191, 1986.
[12] D. Haiping, P. Paihung, R. W. Francis, and W. D. Richard. "Mechanisms of Plasma-Enhanced Silicon Nitride Deposition Using SiH4/N2 Mixture." Journal of the Electrochemical Society, vol. 128, pp. 1555, 1981.
[13] H.T.Yen. "InGaAs avalanche photodiode for single-photon-detector application" National Chaio Tung University, Master thesis, 2007.
[14] F. Acerbi, M. Anti, A. Tosi, F. Zappa. "Design Criteria for InGaAs/InP Single-Photon Avalanche Diode." IEEE Photonics Journal, vol. 5, pp. 6800209-6800209, April 2013.
[15] Y. Muramoto, T. Ishibashi. "InP/InGaAs pin photodiode structure maximising bandwidth and efficiency." Electronics Letters, Vol. 39, No. 24, 27th November 2003.
[16] R. N. Hall. "Electron-Hole Recombination in Germanium." Physical Review, vol. 87, pp. 387-387, 1952.
[17] W. Shockley and W. T. Read. "Statistics of the Recombinations of Holes and Electrons." Physical Review, vol. 87, pp. 835-842, 1952.
[18] K. Sugihara, E. Yagyu, and Y. Tokuda. "Numerical analysis of single photon detection avalanche photodiodes operated in the Geiger mode." Journal of Applied Physics, vol. 99, pp. 124502, 2006.
[19] Oxford Instruments. "Optistatcf." pp. 2, 2005.
[20] Jack Jia-Sheng Huang, H. S. Chang, Yu-Heng Jan, C. J. Ni, H. S. Chen, Emin Chou. "Temperature Dependence Study of Mesa-Type InGaAs/InAlAs Avalanche Photodiode Characteristics." Advances in Opto Electronics, Vol. 2017, Article ID 2084621, 2017.
[21] G. Karve et al. "Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes." Applied Physics Letters, vol. 86, pp. 063505, 2005.
[22] Gauri Vibhakar Karve. "Avalanche Photodiodes As Single Photon Detectors." The University of Texas at Austin, PhD Dissertation, May 2005.
[23] Yingjie Ma, Yonggang Zhang, Yi Gu, Yanhui Shi, Xingyou Chen, Wanyan Ji, Ben Du, Xiumei Shao, Jiaxiong Fang. "Electron-initiated low noise 1064 nm InGaAsP/InAlAs avalanche photodetectors." OSA publishing, Vol. 26, Issue 2, pp. 1028-1037, 2018.
[24] Jheng-Jie Liu, Wen-Jeng Ho, June-Yan Chen, Jian-Nan Lin, Chi-Jen Teng, Chia-Chun Yu, Yen-Chu Li, Ming-Jui Chang. "The Fabrication and Characterization of InAlAs/InGaAs APDs Based on a Mesa-Structure with Polyimide Passivation." Sensors, Vol. 19, Issue 15, 2019.
[25] Hiroshi Ito, Tadao Nagatsuma, Tadao Ishibashi. "Uni-Traveling-Carrier Photodiodes for High-Speed Detection and Broadband Sensing." SPIE, Vol. 6479, 64790X, 2007.
[26] Xun Ding, Kai Zang, Yueyang Fei, Tianzhe Zheng, Tao Su, Matthew Morea, Ge Jin, James S. Harris, Xiao Jiang, Qiang Zhang. "Pile-up correction in characterizing single photon avalanche diodes of high dark count rate." Optical and Quantum Electronics, vol. 50, pp. 1-11, 2018.
[27] Michael Wahl, "Time-Correlated Single Photon Counting." PicoQuant GmbH, 2014.
[28] Martin J. Stevens. "Single-Photon Generation and Detection: Physics and Applications." Academic Press, pp. 63-64, 2013.
[29] Cova, Sergio, A. Lacaita, G. Ripamonti. "Trapping phenomena in avalanche photodiodes on nanosecond scale." IEEE Electron Device Letters, vol. 12, no. 12, pp. 685-687, 1991.
[30] Gaskill D. K, Bottka, N, Aina, L, Mattingly M. "Band-gap determination by photoreflectance of InGaAs and InAlAs lattice matched to InP." Applied Physics Letters, Vol. 56, pp. 1269-1271, Issue 13, 1990.
[31] L. J. J. Tan et al. "Temperature Dependence of Avalanche Breakdown in InP and InAlAs." IEEE Journal of Quantum Electronics, vol. 46, no. 8, pp. 1153-1157, Aug. 2010.
指導教授 李依珊(Yi-Shan Lee) 審核日期 2020-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明