博碩士論文 107521026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.217.67.16
姓名 賴育辰(Yu-Chen Lai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體
(A New Transistor by Integrating Schottky P-GaN Gate Diode and P-GaN Gate AlGaN/GaN HEMT)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析★ 氮化鋁鎵/氮化鎵高電子遷移率電晶體之佈局分析及功率放大器研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 相較於單一HEMT,SPGD-HEMT擁有較低的閘極漏電流,在VGS = 10 V、VDS = 0 V時降低約10倍。在轉換特性與輸出特性方面,SPGD-HEMT之臨界電壓VTH提升了約0.1 V,同時保持了差不多的汲極電流與導通電阻。反向導通能力方面,在ID = 1 mA/mm、VGS = -4 V時反向導通電壓降低了約2.3 V,可降低元件閘極關閉時的反向導通損耗。在電容特性方面,SPGD-HEMT在輸入電容、輸出電容、逆向轉換電容皆明顯的降低,減少元件在切換時的損耗。動態切換方面,隨著汲極關閉電壓增加時,SPGD-HEMT之動態導通電阻增加幅度較低,顯示其在高壓切換時更具優勢。元件之崩潰電壓在基板浮接時HEMT為929 V,SPGD-HEMT為1209 V,提升約280 V。在閘極崩潰量測方面,在閘極施加一定電壓(VGS = 10, 11 V),HEMT之閘極崩潰時間約為32 s與473 s,但在相同條件下,SPGD-HEMT能持續6000 s而沒有發生閘極崩潰。
摘要(英) Comparing with the conventional HEMT, the SPGD-HEMT has smaller gate leakage, which has decreased about 10 times at VGS = 10 V, VDS = 0 V. In terms of transfer characteristic and output characteristic, the SPGD-HEMT a larger VTH, while keeping the similar drain current and RON. The SPGD-HEMT also shows better reverse conduction capability. The reverse turn on voltage of SPGD-HEMT is decreased by 2.3 V at ID = 1 mA/mm, VGS = -4 V, which means that SPGD-HEMT has less reverse conduction loss. In C-V measurement, the Ciss and Crss of the SPGD-HEMT are significantly decreased due to the SPGD connected to the gate of HEMT. In dynamic switching measurement, with the increase of VDS.OFF, the SPGD-HEMT shows less increase in the dynamic RON, showing the advantage in high voltage switching. With substrate floating, the device breakdown voltage of HEMT is 929 V, while the device breakdown voltage of the SPGD-HEMT is increased to 1209 V. In gate breakdown measurement, the gate of the device is constantly stressed (VGS = 10, 11 V). The conventional HEMT has the gate breakdown time of 32 s and 473 s, while the SPGD-HEMT does not show gate breakdown under the same gate stress even the gate stress time is over 6000 s.
關鍵字(中) ★ 氮化鎵
★ p型氮化鎵
★ 高電子遷移率電晶體
★ 二極體
關鍵字(英) ★ GaN
★ p-GaN
★ HEMT
★ Diode
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 氮化鎵材料特性 2
1.3 加強型氮化鎵電晶體之閘極特性改善文獻回顧 4
1.4 研究動機與目的 11
1.5 論文架構 12
第二章 蕭特基p型氮化鎵閘極二極體與p型氮化鎵閘極高電子遷移率電晶體之元件結構與測量分析 13
2.1 前言 13
2.2 SPGD結構與特性量測分析 13
2.2.1 SPGD相關文獻回顧 13
2.2.2 SPGD元件結構與工作原理 17
2.2.3 SPGD直流I-V特性量測分析 19
2.2.4 SPGD特性模擬 21
2.3 HEMT元件結構與特性量測 24
2.3.1 HEMT元件結構 24
2.3.2 HEMT直流I-V特性量測 24
2.4 結論 27
第三章 整合蕭特基p型氮化鎵閘極二極體與p型氮化鎵閘極高電子遷移率電晶體之新型電晶體 28
3.1 前言 28
3.2 新型電晶體SPGD-HEMT之元件結構與工作原理 28
3.3 新型電晶體SPGD-HEMT之直流I-V特性量測分析 29
3.3.1 閘極漏電流、轉換特性、輸出特性量測分析 29
3.3.2 反向導通特性量測分析 32
3.3.3 元件崩潰特性量測分析 33
3.3.4 直流I-V特性變溫量測及分析 34
3.3.5 SPGD-HEMT直流I-V特性提升原因探討 37
3.4 新型電晶體SPGD-HEMT之電容、動態切換、閘極崩潰時間量測分析 40
3.4.1 電容特性量測 40
3.4.2 動態切換量測 44
3.4.3 閘極崩潰時間量測 47
3.5 結論 48
第四章 結論 49
參考文獻 50
參考文獻 [1] F. Roccaforte, G. Greco, P. Fiorenza, and F. Iucolano, “An overview of normally-off GaN-based high electron mobility transistors,” Materials (Basel), vol. 12, no. 10, May 2019.
[2] Semiconductor TODAY, “GaN to grow at 9% CAGR to over 18% of RF device market by 2020,” Semiconductor TODAY, 2014.
[3] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 85, no. 6, pp.3222-3233, Mar. 1999.
[4] T. Oka, and T. Nozawa, “AlGaN/GaN recessed MIS-gate HFET with high-threshold-voltage normally-off operation for power electronics applications,” IEEE Electron Device Letters, vol. 29, no. 7, pp.668-670, Jul. 2008.
[5] Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau, “High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment,” IEEE Electron Device Letters, vol. 26, no. 7, pp.435-437, Jul. 2005.
[6] O. Hilt, A. Knauer, F. Brunner, E. Bahat-Treidel, and J. Würfl, “Normally-off AlGaN/GaN HFET with p-type Ga gate and AlGaN buffer,” 2010 22nd International Symposium on Power Semiconductor Devices & IC′s (ISPSD), pp.347-350, 2010.
[7] Y. Xu, S. Cristoloveanu, M. Bawedin, K.-S. Im, and J.-H. Lee, “Performance improvement and sub-60 mV/decade swing in AlGaN/GaN FinFETs by simultaneous activation of 2DEG and sidewall MOS channels,” IEEE Transactions On Electron Devices, vol. 65, no. 3, pp.915-920, Mar. 2018.
[8] R. Brown, D. Macfarlane, A. A.-Khalidi, X. Li, G. Ternent, H. Zhou, I. Thayne, and E. Wasige, “A sub-critical barrier thickness normally-off AlGaN/GaN MOS-HEMT,” IEEE Electron Device Letters, vol. 35, no. 9, pp.906-908, Sep. 2014.
[9] F. Roccaforte, G. Greco, P. Fiorenza, and F. Iucolano, “An overview of normally-off GaN-based high electron mobility transistors,” Materials, vol. 12, no. 10, pp.5-9, May 2019. [10] I. Hwang, J. Kim, Hyuk S. Choi, H. Choi, J. Lee, K. Y. Kim, J.-B. Park, J. C. Lee, J. Ha, J. Oh, J. Shin, and U.-I. Chung, “p-GaN gate HEMTs with tungsten gate metal for high threshold voltage and low gate current,” IEEE Electron Device Letters, vol. 34, no. 2, pp.202-204, Feb. 2013.
[11] F. Lee, L.-Y. Su, C.-H. Wang, Y.-R. Wu, and J. Huang, “Impact of gate metal on the performance of p-GaN/AlGaN/GaN high electron mobility transistors,” IEEE Electron Device Letters, vol. 36, no. 3, pp.232-234, Mar. 2015.
[12] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, “Gate injection transistor (GIT)—a normally-off AlGaN/GaN power transistor using conductivity modulation,” IEEE Transactions on Electron Devices, vol. 54, no. 12, pp.3393-3399, Dec. 2007.
[13] L. Efthymiou, G. Longobardi, G. Camuso, T. Chien, M. Chen, and F. Udrea, “On the physical operation and optimization of the p-GaN gate in normally-off GaN HEMT devices,” Applied Physics Letters, vol. 110, no. 12, Mar. 2017.
[14] H.-C. Chiu, Y.-S. Chang, B.-H. Li, H.-C. Wang, H.-L. Kao, C.-W. Hu, and R. Xuan, “High-performance normally off p-GaN gate HEMT with composite AlN/Al0.17Ga0.83N/Al0.3Ga0.7N barrier layers design,” IEEE Journal of the Electron Devices Society, vol. 6, no. 1, pp.201-206, Jan. 2018.
[15] G. Zhou, Z. Wan, G. Yang, Y. Jiang, R. Sokolovskij, H. Yu, and G. Xia, “Gate leakage suppression and breakdown voltage enhancement in p-GaN HEMTs using metal/graphene gates,” IEEE Transactions on Electron Devices, vol. 67, no. 3, pp.875-880, Mar. 2020. [16] C. Wang, M. Hua, J. Chen, S. Yang, Z. Zheng, J. Wei, L. Zhang, and K. J. Chen, “E-Mode p-n junction/AlGaN/GaN (PNJ) HEMTs,” IEEE Electron Device Letters, vol. 41, no. 4, pp.545-548, Apr. 2020.
[17] T. Pu, X. Wang, Q. Huang, T. Zhang, X. Li, L. Li, and J.-P. Ao, “Normally-off AlGaN/GaN heterojunction metal-insulator-semiconductor field-effect transistors with gate-first process,” IEEE Electron Device Letters, vol. 40, no. 2, pp.185-188, Feb. 2019.
[18] W. Chen, K. Wong and K. J. Chen, “Monolithic integration of lateral field-effect rectifier with normally-off HEMT for GaN-on-Si switch-mode power supply converters,” 2008 IEEE International Electron Devices Meeting, pp.1-4, 2008.
[19] W. Chen, K. Wong and K. J. Chen, “Single-chip boost converter using monolithically integrated AlGaN/GaN lateral field-effect rectifier and normally off HEMT,” IEEE Electron Device Letters, vol. 30, no. 5, pp.430-432, May 2009.
[20] K. Wong, W. Chen, Q. Zhou and K. J. Chen, “Zero-bias mixer based on AlGaN/GaN lateral field-effect diodes for high-temperature wireless sensor and RFID applications,” IEEE Transactions on Electron Devices, vol. 56, no. 12, pp.2888-2894, Dec. 2009.
[21] C. Zhou, W. Chen, E. L. Piner and K. J. Chen, “AlGaN/GaN dual-channel lateral field-effect rectifier with punchthrough breakdown immunity and low on-resistance,” IEEE Electron Device Letters, vol. 31, no. 1, pp.5-7, Jan. 2010.
[22] M. Basler, R. Reiner, S. Moench, P. Waltereit, R. Quay, I. Kallfass, and O. Ambacher, “Large-area lateral AlGaN/GaN-on-Si field-effect rectifier with low turn-on voltage,” IEEE Electron Device Letters, vol. 41, no. 7, pp.993-996, Jul. 2020.
[23] S. Su, Y. Zhong, Y. Zhou, H. Gao, X. Zhan, X. Chen, X. Guo, Q. Sun, Z. Zhang, W. Bi and H. Yang, “A p‐GaN‐gated hybrid anode lateral diode with a thicker AlGaN barrier layer,” Phys. Status Solidi A, vol. 217, no. 7, Apr. 2020.
[24] A. M. Bouchour, P. Dherbécourt, O. Latry, and A. E. Oualkadi, “Temperature effects of GaN HEMTs on the design of power converters,” International Conference on Computing and Wireless Communication Systems (ICCWCS), Apr. 2019. [25] A. Wadsworth, “Parametric handbook,” Agilent Technologies, Jul. 2013.
[26] Agilent Technologies, “Agilent N1267A HVSMU/HCSMU fast switch dynamic on-resistance measurement in GaN FET,” Agilent Technologies, Sep. 2013.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明