博碩士論文 107521040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.230.173.188
姓名 韓毅(YI Han)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現
(A Design and Implementation of High-Throughput LDPC code Decoder for 10GBASE-T and IEEE 802.3bz Standard)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器
★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計
★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器★ 地面數位電視廣播基頻接收器之載波同步設計
★ 適用於通訊系統之參數化數位訊號處理器核心★ 以正交分頻多工系統之同步的高效能內插法技術
★ 正交分頻多工通訊中之盲目頻域等化器★ 兆元位元率之平行化可適性決策回饋等化器設計與實作
★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design
★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計★ 低複雜度與高速多速率多階有限脈衝響應數位濾波器設計技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) IEEE Std 802.3bz™-2016標準中所採用的低密度同位元檢查矩陣有區塊平行特性,此矩陣被設計給(6,32)-regular (2048,1723) Reed Solomon-based Gallager-LDPC code,使得我們可以在相同位元錯誤率(BER)之下採用部分平行化設計減少面積以及繞線複雜度。
本篇論文中,提出了一個適用於™-2016標準的低密度奇偶檢查碼之解碼器,使用正規化最小和演算法(Normalized Min-Sum Algorithm)與0.5的正規化因子(scaling factor)來實現,如此一來電路不需要使用到任何一顆乘法器,並利用標準中所採用的3842048奇偶檢查矩陣(parity-check matrix),將矩陣分解成6個642048的子矩陣,使解碼平行化。除了矩陣分解外,再將檢查點位置提取出來做接線,矩陣大小再度降低為6個6432的子矩陣,同時使用上述兩種方法可以大大降低晶片面積大小。另外因為解碼平行化的關係,兩次迭代解碼時間將平均分散在4096個時脈中,如此可以大大降低晶片功耗。
最後我們使用TSMC 40nm製程操作在680MHz最高傳輸率可以達到9.157Gbps的吞吐量。實作後電壓供應0.9伏特時平均功率消耗為 153 mW,解碼器核心面積大約是 4 mm2。
摘要(英) A grouped-parallel low-density parity check (LDPC) matrix in standard for IEEE Std 802.3bz™-2016 is demonstrated for a (6,32)-regular (2048,1723) Reed Solomon-based Gallager-LDPC code. It is adopted to reduce the hardware area cost and routing congestion with similar bit error rate (BER).
In this thesis, we propose a LDPC decoder in standard for IEEE Std 802.3bz™-2016 by using Normalized Min-Sum Algorithm with scaling factor equal to 0.5. The 3842048 parity-check matrix can be partitioned into 6 groups of 642048 submatrix in standard. In addition to matrix partitioning, the submatrix can be resized to six 6432 if we only use 1s in parity-check matrix for routing. Both of these two methods are used, we can significantly reduce the chip area. Also, lower power consumption if we use two times iteration decoding by timesharing in 4096 clock cycle time.
Finally, the implementation of decoder with TSMC 40nm process can achieves a decoding throughput 9.157Gb/s under the maximum clock frequency of 680Mhz. The average power consumption is close to 153 mW and the core size is approximately 4 mm2.
關鍵字(中) ★ 低密度奇偶檢查碼
★ 正規化最小和演算法
★ 奇偶檢查矩陣
★ 正規里德所羅門碼-低密度奇偶檢查碼
關鍵字(英) ★ Low Density Parity Check code
★ LDPC code
★ Normalized Min-Sum Algorithm
★ IEEE 802.3bz
★ parity-check matrix
★ regular RS-LDPC code
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 簡介 1
1.2 動機 2
1.3 論文組織 2
第二章 錯誤更正碼(Error Correction Codes) 3
2.1 數位通訊系統 3
2.2 通道編碼類型 4
2.2.1 區塊碼(Block code) 5
2.2.2 迴旋碼(Convolutional code) 8
第三章 低密度同位元檢查碼(LDPC code) 10
3.1 低密度同位元檢查碼(LDPC code)簡介 10
3.1.1 正規低密度同位元檢查碼(regular LDPC codes) 10
3.1.2 Tanner graph 11
3.1.3 非正規低密度同位元檢查碼(irregular LDPC code) 12
3.2 低密度同位元檢查碼(LDPC code)的編碼方法 13
3.2.1 預處理方法 13
3.2.2 高效編碼方法 14
3.3 低密度同位元檢查碼(LDPC code)的解碼方法 16
3.3.1 訊息傳遞的概念(Concept of Message Passing) 16
3.3.2 和積演算法(Sum-Product Algorithm, SPA) 18
3.3.3 對數型和積演算法(Log Domain SPA) 20
3.3.4 最小和演算法(The Min-Sum Algorithm) 21
3.3.5 正規化最小和演算法(Normalized Min-Sum Algorithm) 22
第四章 IEEE Std 802.3bz™-2016 24
4.1 背景 24
4.2 傳送端與接收端 25
4.3 模擬結果 28
4.3.1 和積演算法(SPA)與模擬結果 28
4.3.2 最小和演算法(MSA)與模擬結果 30
4.3.3 正規化最小和演算法(NMSA)模擬結果 33
4.3.4 正規化最小和演算法(NMSA)量化模擬結果 35
第五章 硬體架構設計 36
5.1 頂層模組(Top module) 36
5.2 時序圖(Timing Schedule) 37
5.3 基本電路介紹 38
5.3.1 輸入緩衝電路及記憶體暫存電路 39
5.3.2 Mji_block1 39
5.3.3 最小值電路 40
5.3.4 正負號判斷電路 41
5.3.5 Eji_block 41
5.3.6 Li_sum1 42
5.3.7 Mji_block2 42
5.3.8 Li_sum2 42
第六章 晶片實現與比較 43
6.1 硬體設計流程 43
6.2 邏輯合成模擬結果 44
6.2.1 1250MHz(0.80ns): 44
6.2.2 800MHz(1.25ns) 48
6.3 晶片設計結果 53
第七章 結論與未來展望 57
第八章 參考資料 58
參考文獻 [1] C. E. Shannon, "A mathematical theory of communication," in The Bell System Technical Journal, vol. 27, no. 4, pp. 623-656, Oct 1948.
[2] C. E. Shannon, "A mathematical theory of communication," in The Bell System Technical Journal, vol. 27, no. 3, pp. 379-423, July 1948.
[3] R. W. Hamming, "Error detecting and error correcting codes," in The Bell System Technical Journal, vol. 29, no. 2, pp. 147-160, April 1950.
[4] R. G. Gallager, "Low-density parity-check codes," in IRE Transactions on Information Theory, vol. 8, no. 1, pp. 21-28, January 1962.
[5] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.
[6] R. Tanner, "A recursive approach to low complexity codes," in IEEE Transactions on Information Theory, vol. 27, no. 5, pp. 533-547, September 1981.
[7] D. J. C. Mackay and R. M. Neal, "Good Codes Based on Very Sparse Matrices," in 5th IMA Conference on Cryptography and Coding. Lecture Notes in Computer Science number 1025. Berlin: Springer, October 1995, pp. 100-111.
[8] N. Alon and M. Luby, "A linear time erasure-resilient code with nearly optimal recovery," in IEEE Transactions on Information Theory, vol. 42, no. 6, pp. 1732-1736, Nov 1996.
[9] D. J. C. MacKay and R. M. Neal, "Near Shannon limit performance of low density parity check codes," Electron. Lett., vol. 32, no. 18, pp. 1645–1646, Aug 1996.
[10] D. J. C. MacKay and R. M. Neal, "Near Shannon limit performance of low density parity check codes," Reprinted Electron. Lett., vol. 33, no. 6, pp. 457–458, Mar 1997.
[11] M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman and V. Stemann M. G. Luby, "Practical loss-resilient codes," in Proc. 30th ACM Symp. on the Theory of Computing, 1998, pp. 249–258.
[12] D. J. C. MacKay, "Good error-correcting codes based on very sparse matrices," in IEEE Transactions on Information Theory, vol. 45, no. 2, pp. 399-431, March 1999.
[13] M. Mitzenmacher, M. A. Shokrollahi and D. A. Spielman M. G. Luby, "Improved lowdensity parity-check codes using irregular graphs," IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 585–598, February 2001.
[14] G. D. Forney, T. J. Richardson and R. Urbanke Sae-Young Chung, "On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit," in IEEE Communications Letters, vol. 5, no. 2, pp. 58-60, Feb 2001.
[15] A. J. Blanksby and C. J. Howland, "A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder," in IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp. 404-412, March 2002.
[16] A. Morello and V. Mignone, "DVB-S2: The second generation," Proc. IEEE, vol. 94, pp. 210-227, Jan. 2006.
[17] "Standard for Information Technology - Telecommunications and Information Exchange Between Systems – LAN/MAN - Specific Requirements Part 3:," CSMA/CD Access Method and Physical Layer Specifications - Amendment: Physical Layer and Management Parameters for 10 Gb/s Operation, Type 10GBASE-T," in IEEE Std 802.3an-2006 (Amendment to IEEE Std 802.3-2005), pp. 1-181, Sept. 2006.
[18] "IEEE Standard for Local and Metropolitan Area Networks - Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems - Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands," in IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor 1-2005 (Amendment and Corrigendum to IEEE Std 802.16-2004), pp. 1-822, Feb. 2006.
[19] "IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications," in IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999), pp. 1-1076, June 2007.
[20] D. Divsalar, S. Dolinar, J. Hamkins, C. R. Jones and F. Pollara K. S. Andrews, "The Development of Turbo and LDPC Codes for Deep-Space Applications," in Proceedings of the IEEE, vol. 95, no. 11, pp. 2142-2156, Nov. 2007.
[21] A. Kavcic and A. Patapoutian, "The Read Channel," in Proceedings of the IEEE, vol. 96, no. 11, pp. 1761-1774, Nov. 2008.
[22] "IEEE Standard for Ethernet Amendment 7: Media Access Control Parameters, Physical Layers, and Management Parameters for 2.5 Gb/s and 5 Gb/s Operation, Types 2.5GBASE-T and 5GBASE-T," in IEEE Std 802.3bz-2016 (Amendment to IEEE Std 802.3-2015 as amended by IEEE Std 802.3bw-2015, IEEE Std 802.3by(TM)-2016, IEEE Std 802.3bq-2016, IEEE Std 802.3bp-2016, IEEE Std 802.3br-2016, and IEEE Std 802.3bn-2016, pp. 1-185, Oct. 2016.
[23] T. J. Richardson and R. L. Urbanke, "Efficient encoding of low-density parity-check codes," in IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 638-656, Feb 2001.
[24] Judea Pearl, Probabilistic Reasoning in Intelligent Systems. San Mateo, CA: Morgan Kaufmann, 1988.
[25] J. Heo., "Analysis of Scaling Soft Information on Low Density," Elect. Letters, vol. 39, no. 2, pp. 219-221, Jan 2003.
[26] William E. Ryan, Shu Lin, Channel Codes: Classical and Modern, 1st ed. New York, Cambridge CB2 8RU: Cambridge University Press, 2009.
[27] Wikiwand. [Online]. https://www.wikiwand.com/en/Ethernet_over_twisted_pair

[28] V. Anantharam, M. J. Wainwright and B. Nikolic Z. Zhang, "An Efficient 10GBASE-T Ethernet LDPC Decoder Design With Low Error Floors," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 843-855, Apr. 2010.
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2022-3-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明