博碩士論文 107521053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.222.1.187
姓名 蔡忠穎(Chung-Ying Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 運用粒子群最佳化演算法之自適應等化器與時序恢復電路設計
(Design of Adaptive Equalizer and Timing Recovery Circuit with Particle Swarm Optimization Algorithm)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 本論文依據IEEE 802.3bz™-2016規範標準[1],設計出乙太網路傳輸之數位基頻收發機晶片來送收PAM-16編碼之訊號。有線乙太網路通道屬於緩慢時變通道,因此提出通道等化器演算法、時序恢復電路及數位電路設計,在演算法的選擇上使用較低複雜度的LMS演算法來解決通道效應。其中通道等化器採用前饋等化器(Feedforward Equalizer, FFE)、決策回饋等化器(Decision Feedback Equalizer, DFE)、湯林森-何洛緒瑪預編碼(Tomlinson-Harashima Precoder , THP)[2][3]以及輔助回授等化器(Auxiliary Feedback Equalizer, AFBE)[4]做設計。為解決時脈不匹配效應以及通道的角度偏移效應,以鎖相迴路設計之時序恢復電路(Timing Recovery)採用穆勒與姆勒演算法(Mueller and Muller, M&M)的相位檢測方法實現,並透過粒子群最佳化演算法(Particle Swarm Optimization Algorithm, PSO)[5]來選擇通道偏移的角度,其目的在找到較好的通道角度以提升其效能。在硬體實現上,先利用Verilog HDL撰寫,透過SMIMS VeriEnterprise Xilinx FPGA進行即時驗證電路功能,且經由Design Compiler來驗證在製程選擇為TSMC 40 nm下的電路功能,最後也使用相同製程來實現晶片。
摘要(英) This work designs the digital baseband transceiver for Ethernet transmission using PAM-16 signal based on standard IEEE 802.3bz™-2016. The wired Ethernet cables are slow time-varying channels while high speed signals transmitted. Thus, the channel equalizer, timing recovery circuit and the related digital circuit design are proposed to solve the channel effect with lower complexity LMS algorithm. The channel equalizer adopts the feedforward equalizer, decision feedback equalizer, Tomlinson-Harashima Precoder and auxiliary feedback equalizer. In order to solve the clock mismatch effect and the channel angle offset effect, the Timing Recovery circuit designed with a phase-locked loop is implemented using the Mueller and Muller algorithm. Furthermore, the Particle Swarm Optimization Algorithm (PSO) is used to select the channel offset in purpose to find a better channel angle to increase its effectiveness.
At last, this hardware design is coded in Verilog HDL and simulated. The circuit function is verified in real time through SMIMS VeriEnterprise Xilinx FPGA, and implemented under TSMC 40nm process through Design Compiler, and finally use the same process to complete the chip.
關鍵字(中) ★ 等化器
★ 時序恢復
關鍵字(英) ★ Equalizer
★ Timing Recovery
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 x
第一章 緒論 - 1 -
1.1背景 - 1 -
1.2研究動機 - 1 -
1.3論文貢獻 - 2 -
1.4論文架構 - 2 -
第二章 等化器架構介紹 - 3 -
2.1 濾波器架構 - 3 -
2.2 線性等化器(LE) - 5 -
2.3 可適性等化器(AE) - 6 -
2.4 決策回授等化器(DFE) - 6 -
2.6 輔助回授等化器(AFBE) - 10 -
第三章 等化器演算法介紹 - 11 -
3.1 非盲目等化器演算法 - 11 -
3.1.1 最小均根(Least Mean Square, LMS) - 11 -
3.2 盲目等化器演算法 - 14 -
3.2.1 決策導向(DD)演算法 - 14 -
3.2.2 定值模數演算法(CMA) - 16 -
3.2.3 粒子群最佳化演算法(PSO) - 18 -
3.2.4 具有微分擾動速度的粒子群最佳化演算法(PSO-DV) - 21 -
第四章 時序恢復電路介紹 - 23 -
4.1 基本介紹 - 23 -
4.2時序恢復電路系統概要 - 24 -
4.2.1 相位檢測器(PD) - 25 -
4.2.2 迴路濾波器(LF) - 27 -
4.2.3 壓控振盪器(VCO) - 28 -
第五章 系統架構與模擬結果 - 29 -
5.1 系統架構 - 29 -
5.2 系統環境 - 31 -
5.3 模擬環境 - 33 -
5.3.1 十公尺模擬環境 - 33 -
5.3.2 五十公尺模擬環境 - 33 -
5.3.2 一百公尺模擬環境 - 34 -
5.4 等化器模擬結果 - 34 -
5.4.1 CMA/DD演算法模擬結果 - 35 -
5.4.2 PSO演算法模擬結果 - 36 -
5.4.3 PSO-DV演算法模擬結果 - 37 -
5.4.3 輔助回授等化器模擬結果 - 38 -
5.5 時序恢復電路架構 - 38 -
5.5.1 十公尺模擬環境時序恢復電路模擬結果 - 50 -
5.5.2 五十公尺模擬環境時序恢復電路模擬結果 - 51 -
5.5.3 一百公尺模擬環境時序恢復電路模擬結果 - 52 -
5.5 系統驗證 - 53 -
第六章 電路架構與晶片實現 - 54 -
6.1硬體設計規格 - 54 -
6.2 電路設計流程 - 55 -
6.3硬體電路介紹 - 56 -
6.3.1等化器電路 - 56 -
6.3.2粒子群最佳化演算法電路 - 58 -
6.3.3時序恢復電路 - 59 -
6.4模擬驗證 - 60 -
6.5晶片設計結果 - 63 -
第七章 結論與未來展望 - 69 -
參考文獻 - 70 -
參考文獻 [1] IEEE Standard for Ethernet Amendment 7: Media Access Control Parameters, Physical Layers, and Management Parameters for 2.5 Gb/s and 5 Gb/s Operation, Types 2.5GBASE-T and 5GBASE-T.
[2] H. Harashima and H. Miyakawa, "Matched-Transmission Technique for Channels With Intersymbol Interference," in IEEE Transactions on Communications, vol. 20, no. 4, pp. 774-780, August 1972.
[3] M. Tomlinson, “New automatic equalizer employing modulo arithmetic,” Electron. Lett., vol. 7, pp. 138–139, Mar. 1971.
[4] J. E. Smee and S. C. Schwartz, "Adaptive compensation techniques for communications systems with Tomlinson-Harashima precoding," in IEEE Transactions on Communications, vol. 51, no. 6, pp. 865-869, June 2003.
[5] J. Kennedy and R. Eberhart, "Particle swarm optimization," Proceedings of ICNN′95 - International Conference on Neural Networks, 1995.
[6] N. J. Fiege, “Multirate digital signal processing: multirate systems, filter banks, wavelets”, 1994.
[7] Bernard, Skliar, “Digital Communication Fundamentals and Applications,” Prentice Hall,1996.
[8] C. A. Belfiore J. H. Park "Decision feedback equalization" Proc. IEEE vol. 67 pp. 1143-1156 Aug. 1979.
[9] Fertner. A, “Improvement of bit-error-rate in decision feedback equalizer by preventing decision-error propagation,” Signal Processing, IEEE Transactions on vol. 467, pp.1872-1877, July 1998.
[10] B. Widrow and S. D. Stearns, Adaptive Signal Processing, Englewood Cliffs: Prentice Hall, 1985.
[11] Y. Sato, “A method of self-recovering equalization for multi-level amplitude modulation,” IEEE Trans. Commun., Vol. COM-23, NO. 6, pp. 679-682, June 1975.
[12] D. N. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun., vol. COM-28, NO. 11, pp. 1867-1875, Nov. 1980.
[13] K. Vaisakh, M. Sridhar and K. S. L. Murthy, "Adaptive PSO-DV Algorithm for Minimization of Power Loss and Voltage Instability," 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies, 2009, pp. 140-144.
[14] S. Das, A. Abraham, A. Konar, Particle swarm optimization and differential evolution algorithms: technical analysis, applications and hybridization perspectives, in: Ying Liu et al. (Eds.), Advances of Computational Intelligence in Industrial Systems, Studies in Computational Intelligence, Springer Verlag, Germany, 2008, pp. 1-38.
[15] K. H. Mueller and M. Müller, “Timing recovery in digital synchronous data receivers,” IEEE Trans. Commun., vol. COM-24, pp. 516-531, May 1976.
[16] Y. P. Lin, “Implementation of Equalizer and Timing Recovery Circuit for 1Gbps Automotive Ethernet Transmission,” Jan 2019.
[17] C. H. Yao, “Design of Equalizer and Timing Recovery Circuit for IEEE Std 802.3bwTM-2015 Automotive Ethernet Receiver,” Jan 2019.
[18] Y. Y. Chen, “Design and Integration of Equalizer, Echo Canceller and Timing Recovery Circuit for IEEE 802.3bp™-2016 Automotive Ethernet Transceiver,” Jan 2021.
指導教授 薛木添 審核日期 2021-9-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明