博碩士論文 107521063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.206.14.36
姓名 郭哲男(Che-Nan Kuo)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具智慧型太陽光電功率平滑化控制之微電網電能管理系統
(Intelligent PV Power Smoothing Control for Microgrid Energy Management System)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台
★ 智慧型同動控制之龍門式定位平台及應用★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統
★ 智慧型控制雙饋式感應風力發電系統之研製★ 無感測器直流變頻壓縮機驅動系統之研製
★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統★ 多重地網系統之人身安全驗證與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 太陽光電系統受太陽光照度及環境溫度等因素影響,輸出功率具有高間歇性。由於功率瞬間變化量大,若大量併入電力系統,將影響市電的電力品質。因此,本論文提出以遞迴式機率小波模糊類神經網路為架構之智慧型控制,應用於微電網電能管理系統,目的為減緩太陽光電輸出至電網的功率波動,其原理為利用電池儲能系統,來彌補太陽光電實際輸出功率與平滑化後輸出功率之間的差值。本論文之電能管理系統使用聯齊科技的數據閘道器Atto做為硬體,並整合中興電工的微電網系統,Atto每分鐘收集微電網電力資訊儲存並上傳雲端,併網時,於Atto內執行太陽光電功率平滑化演算法,控制電池儲能系統的充放電來平滑化市電功率波動,市電發生異常切換至孤島時,太陽光電系統與電池儲能系統將提供穩定的交流電壓,使微電網維持正常運作。本論文將詳細介紹遞迴式機率小波模糊類神經網路之架構與線上學習法則,並證明其收斂性。除此之外,於功率平滑化控制中,電池會頻繁地充放電,本論文提出基於模糊邏輯之減少電池淺充淺放次數控制法,降低電池的充放電次數使電池壽命延長,並以庫倫積分法估測電池電量狀態。根據再生能源導入電網實功率波動之規範,本研究所提之遞迴式機率小波模糊類神經網路不僅能符合規範,並且與其他平滑化控制法相比所需電池容量最小。最後,利用模擬與實驗結果驗證所提出之功率平滑化控制,應用於微電網電能管理系統且在不同照度變化情況下之成效。
摘要(英) Due to illumination and temperature, intermittent characteristics of a PV power system cause negative impacts on power systems. This thesis presents an intelligent controller based on the recurrent probabilistic wavelet fuzzy neural network (RPWFNN) algorithm for the energy management system to mitigate the fluctuation of PV output power directly fed to the grid. The energy management system uses NextDrive′s data collection gateway Atto and integrates CHEM′s microgrid system. Atto collects microgrid power information every minute and uploads it to the cloud. In grid-connected mode, Atto performs PV power smoothing algorithm. It controls the charging or discharging of the battery energy storage system to smooth the power fluctuations of the grid. When the grid fails, the PV power system and battery energy storage system will provide a stable AC voltage, so that the microgrid can work normally in island mode. The network structure of the RPWFNN and its online learning algorithms are described in detail. In addition, battery life might be decreased by frequent charge-discharge cycling in PV power smoothing control. The method based on fuzzy logic is proposed in this thesis to reduce shallow cycles, and extends the battery life. Moreover, state of charge estimation using Coulomb counting method is adopted in the energy management of battery. According to the grid active power fluctuation limit set in this study, compared with other smooth control methods, RPWFNN not only meets the specifications, but also has the minimum battery energy capacity. Finally, simulated and experimental results of various PV variation scenarios verify the effectiveness of the proposed intelligent PV power smoothing control.
關鍵字(中) ★ 電能管理系統
★ 太陽光電系統
★ 電池儲能系統
★ 功率平滑化
★ 遞迴式機率小波模糊類神經網路
★ 電池狀態
關鍵字(英) ★ energy management system
★ PV power system
★ battery energy storage system
★ power smoothing
★ recurrent probabilistic wavelet fuzzy neural network
★ battery status
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 論文大綱 7
1.4 本文貢獻 8
第二章 微電網架構與控制策略 9
2.1 微電網架構 9
2.2 三相座標軸轉換 10
2.2.1 鎖相迴路 12
2.2.2 三相功率計算 13
2.3 變流器控制技術 13
2.3.1 電流控制 14
2.3.2 定功率控制 14
2.3.3 電壓頻率控制 15
2.4 太陽能電池最大功率點追蹤 16
2.5 微電網分級控制 18
第三章 電能管理系統介紹 20
3.1 通訊架構 20
3.1.1 Modbus通訊協定 21
3.2 電能管理系統 25
3.2.1 追電模式 26
3.2.2 可備援模式 27
3.2.3 時間電價模式 28
3.2.4 通訊控制模式 28
3.2.5 太陽光電功率平滑化模式 28
3.3 硬體設備 29
3.3.1 NextDrive Atto 29
3.3.2 中興電工微電網系統 31
3.3.3 可程控直流電源供應器(具太陽能電池陣列模擬功能) 34
第四章 遞迴式機率小波模糊類神經網路 38
4.1 遞迴式機率小波模糊類神經網路架構 38
4.2 遞迴式機率小波模糊類神經網路線上學習法則 42
4.3 遞迴式機率小波模糊類神經網路收斂性分析 45
第五章 太陽光電功率平滑化控制技術探討 48
5.1 再生能源功率波動 48
5.2 電池電量計算 48
5.3 太陽光電功率平滑化方法 49
5.3.1 移動平均法 50
5.3.2 二階低通濾波法 51
5.3.3 遞迴式機率小波模糊類神經網路 51
5.3.4 太陽光電功率平滑化方法之比較 52
5.4 電池充放電探討 58
5.5 以模糊邏輯減少電池淺充淺放次數 59
5.5.1 減少電池淺充淺放次數控制法 60
5.5.2 模糊邏輯 61
5.5.3 以模糊邏輯減少電池淺充淺放次數之效果 64
第六章 太陽光電功率平滑化模擬與實作成果 69
6.1 系統簡介 69
6.2 不同太陽光照度變化下功率平滑化之模擬 70
6.2.1 照度變化700W/m2-900W/m2-1000W/m2-900W/m2 71
6.2.2 照度變化900W/m2-1000W/m2-900W/m2-800W/m2 75
6.2.3 照度變化700W/m2-800W/m2-700W/m2-900W/m2-1000W/m2 79
6.2.4 不同照度變化之電池狀態分析 83
6.3 不同太陽光照度變化下功率平滑化之實作 85
6.3.1 照度變化700W/m2-900W/m2-1000W/m2-900W/m2 89
6.3.2 照度變化900W/m2-1000W/m2-900W/m2-800W/m2 91
6.3.3 照度變化700W/m2-800W/m2-700W/m2-900W/m2-1000W/m2 93
6.3.4 不同照度變化之電池狀態分析 95
第七章 結論與未來研究方向 96
7.1 結論 96
7.2 未來研究方向 97
參考文獻 98
作者簡歷 104
參考文獻 [1] V. Henze, “Scale-up of solar and wind puts existing coal, gas at risk,” Apr. 2020.
[2] IEA, “Tracking power 2019,” 2019.
[3] IEA, “Tracking power 2020,” 2020.
[4] 行政院,前瞻基礎建設計畫—綠能建設,2019。
[5] 中華民國經濟部,https://www.moea.gov.tw/MNS/populace/home/Home.aspx。
[6] 台灣電力股份有限公司,https://www.taipower.com.tw/tc/index.aspx。
[7] M. Lei, Z. Yang, Y. Wang, H. Xu, L. Meng, J. C. Vasquez and J. M. Guerrero, “An MPC-based ESS control method for PV power smoothing applications, ” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2136-2144, Mar. 2018.
[8] A. Jamehbozorg, S. N. Keshmiri and G. Radman, “PV output power smoothing using energy capacitor system,” 2011 Proceedings of IEEE Southeastcon, Nashville, TN, USA, pp. 164-168, 2011.
[9] F. Katiraei and J. R. Agüero, “Solar PV integration challenges,” IEEE Power Energy, vol. 9, no. 3, pp. 62-71, May-Jun. 2011.
[10] G. Wang, G. Konstantinou, C. D. Townsend, J. Pou, S. Vazquez, G. D. Demetriades, and V. G. Agelidis, “A review of power electronics for grid connection of utility-scale battery energy storage systems,” IEEE Transactions on Sustainable Energy, vol. 7, no. 4, pp. 1778-1790, 2016.
[11] V. Gevorgian and S. Booth, “Review of PREPA technical requirements for interconnecting wind and solar generation,” Nov. 2013.
[12] “Grid connection code for renewable power plants ( RPPs ) connected to the electricity transmission system ( TS ) or the distribution system ( DS ) in South Africa version 3.0,” 2019.
[13] 趙若妤,「應用於儲能系統之智慧型太陽光電功率平滑化控制」,國立中央大學電機工程研究所,碩士論文,民國105年
[14] A. Awad, I. Tumar, M. Hussein, W. Ghanem and J. A. Sa′ed, “PV output power smoothing using flywheel storage system,” 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Milan, pp. 1-6, 2017.
[15] B. Kang, S. Kim, S. Bae and J. Park, “Effect of a SMES in power distribution network with PV system and PBEVs,” IEEE Trans. Appl. Supercond., vol. 23, no. 3, pp. 5700104-5700104, Jun. 2013.
[16] W. Kreeumporn and I. Ngamroo, “Optimal superconducting coil integrated into PV generators for smoothing power and regulating voltage in distribution system with PHEVs,” IEEE Trans. Appl. Supercond., vol. 26, no. 7, pp. 1-5, Oct. 2016.
[17] M. Y. Worku, M. A. Abido, and R. Iravani, “Power fluctuation minimization in grid connected photovoltaic using supercapacitor energy storage system,” Journal of Renewable and Sustainable Energy, vol. 8, no. 1, pp. 013501, Feb. 2016.
[18] X. Li, D. Hui and X. Lai, “Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations,” IEEE Transactions on Sustainable Energy, vol. 4, no. 2, pp. 464-473, Apr. 2013.
[19] R. P. Sasmal, S. Sen and A. Chakraborty, “Solar photovoltaic output smoothing: using battery energy storage system,” 2016 National Power Systems Conference (NPSC), Bhubaneswar, pp. 1-5, 2016.
[20] H. Nazaripouya, C. Chu, H. R. Pota and R. Gadh, “Battery energy storage system control for intermittency smoothing using an optimized two-stage filter,” IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 664-675, Apr. 2018.
[21] G. Wang, M. Ciobotaru and V. G. Agelidis, “Power smoothing of large solar PV plant using hybrid energy storage,” IEEE Transactions on Sustainable Energy, vol. 5, no. 3, pp. 834-842, Jul. 2014.
[22] 劉玉章、曾育貞、呂永方、沈錦昌、鍾人傑,「電網級儲能技術研發現況與進展」,臺灣能源期刊,第二卷,第二期,第169-190頁,民國104年
[23] G. He, Q. Chen, C. Kang, P. Pinson and Q. Xia, “Optimal bidding strategy of battery storage in power markets considering performance-based regulation and battery cycle life,” IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2359-2367, Sep. 2016.
[24] J. S. R. Jang, C. T. Sun, and E. Mizutani, “Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence,” Prentice-Hall, New Jersey, pp. 1-614, 1997.
[25] F. J. Lin, W. J. Hwang and R.J. Wai, “A supervisory fuzzy neural network control system for tracking periodic inputs,” IEEE Tran. Fuzzy Syst., vol. 7, no. 1, pp. 41-52, Feb. 1999.
[26] L. X. Wang, A Course in Fuzzy Systems and Control, Prentice-Hall, New Jersey, pp. 1-424, 1997.
[27] Y. M. Park, M. S. Choi and K. Y. Lee, “An optimal tracking neuro-controller for nonlinear dynamic systems,” IEEE Trans. Neural Netw., vol. 7, no. 5, pp. 1099-1110, Sep. 1996.
[28] L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, pp. 1-352, 1994..
[29] W. Yu and X. Li, “Fuzzy identification using fuzzy neural networks with stable learning algorithms,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 411-420, Jun. 2004.
[30] F. J. Lin, H. J. Shieh, P. K. Huang and L. T. Teng, “Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 53, no. 9, pp. 1649-1661, Sep. 2006.
[31] Y. Gao and M. J. Er, “An intelligent adaptive control scheme for postsurgical blood pressure regulation,” IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 475-483, Mar. 2005.
[32] F. Lin, P. Huang, C. Wang and L. Teng, “An induction generator system using fuzzy modeling and recurrent fuzzy neural network,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 260-271, Jan. 2007.
[33] F. Lin, I. Sun, K. Yang and J. Chang, “Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive,” IEEE Trans. Fuzzy Syst., vol. 24, no. 1, pp. 153-167, Feb. 2016.
[34] X. Jin, D. Srinivasan and R. L. Cheu, “Classification of freeway traffic patterns for incident detection using constructive probabilistic neural networks,” IEEE Trans. Neural Netw., vol. 12, no. 5, pp. 1173-1187, Sep. 2001.
[35] S. J. Hart, R. E. Shaffer, S. L. R. Pehrsson and J. R. McDonald, “Using physics-based modeler outputs to train probabilistic neural networks for unexploded ordnance (UXO) classification in magnetometry surveys,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 4, pp. 797-804, Apr. 2001.
[36] F. J. Lin, Y. S. Huang, K. H. Tan, Z. H. Lu, and Y. R. Chang, “Intelligent-controlled doubly fed induction generator system using PFNN,” Neural Computing and Applications, vol. 22, no. 7, pp. 1695-1712, Jun. 2013.
[37] J. Zhang, G. G. Walter, Y. Miao and W. N. W. Lee, “Wavelet neural networks for function learning,” IEEE Trans. Signal Process., vol. 43, no. 6, pp. 1485-1497, Jun. 1995.
[38] Q. Zhang, “Using wavelet network in nonparametric estimation,” IEEE Trans. Neural Netw., vol. 8, no. 2, pp. 227-236, Mar. 1997.
[39] C. Juang and J. Chen, “A recurrent fuzzy-network-based inverse modeling method for a temperature system control,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 37, no. 3, pp. 410-417, May 2007.
[40] K. H. Tan, F. J. Lin, and C. M. Shih, and C. N. Kuo, “Intelligent control of microgrid with virtual inertia using recurrent probabilistic wavelet fuzzy neural network,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7451-7464, Jul. 2020
[41] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jiménez-Estévez and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1905-1919, Jul. 2014.
[42] Y. Li and Y. W. Li, “Decoupled power control for an inverter based low voltage microgrid in autonomous operation,” 2009 IEEE 6th International Power Electronics and Motion Control Conference, Wuhan, pp. 2490-2496, 2009.
[43] I. J. Balaguer, Q. Lei, S. Yang, U. Supatti and F. Z. Peng, “Control for grid-connected and intentional islanding operations of distributed power generation,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 147-157, Jan. 2011.
[44] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, Jan. 2011.
[45] Y. Han, K. Zhang, H. Li, E. A. A. Coelho and J. M. Guerrero, “MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: a comprehensive overview,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6488-6508, Aug. 2018.
[46] Y. H. Yang and F. Blaabjerg, “A modified P&O MPPT algorithm for single phase PV systems based on deadbeat control,” Proc. 6th IET Inter. Conf. Power Electronics, Machines and Drives, Mar. 2012.
[47] B. Zhao, X. Wang, D. Lin, M. M. Calvin, J. C. Morgan, R. Qin and C. Wang, “Energy management of multiple microgrids based on a system of systems architecture,” IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6410-6421, Nov. 2018.
[48] The Modbus Organization,http://www.modbus.org/。
[49] NextDrive聯齊科技股份有限公司,https://www.nextdrive.io/。
[50] Rockchip瑞芯微電子股份有限公司,https://www.rock-chips.com/。
[51] 中興電工機械股份有限公司,https://www.chem.com.tw/tc/index.aspx。
[52] 加百裕工業股份有限公司,http://www.celxpert.com.tw/。
[53] 研華股份有限公司,https://www.advantech.tw/。
[54] 使用手冊,可程控直流電源供應器(具太陽能電池陣列模擬) 62000H系列使用手冊,Chroma,2012。
[55] The University of Queensland. UQ SOLAR Photovoltaic Live Data, [Online]. Available: http://solar.uq.edu.au/user/reportPower.php.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2020-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明